

FIFTY YEARS OF THE *closo*-DECABORATE ANION CHEMISTRYIgor B. SIVAEV^{a1,*}, Alexander V. PRIKAZNOV^{a2} and Daoud NAOUFAL^{b,c}^a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russia; e-mail: ¹ sivaev@ineos.ac.ru, ² s-ineos@mail.ru^b Laboratoire de Chimie de Coordination Inorganique et Organométallique LCIO, Université Libanaise, Faculté des Sciences I, Hadath, Liban; e-mail: dnaoufal@ul.edu.lb^c EDST, PRASE, Université Libanaise, Hadath, Liban

Received May 20, 2010

Accepted August 6, 2010

Published online November 10, 2010

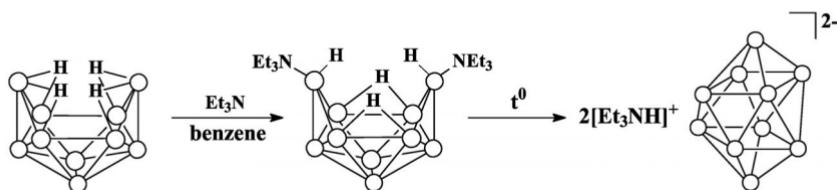
We have the pleasure to dedicate this paper to Professor Bohumil Štíbr on the occasion of his 70th birthday in recognition of his outstanding contribution to boron cluster chemistry.

The review covers the fifty-year period of chemistry of the *closo*-decaborate anion $[B_{10}H_{10}]^{2-}$ ²⁻ from the first report by Hawthorne and Pritchetti. The main attention is paid to reactions of substitution of various atoms and groups for hydrogen atoms. The general stability of the *closo*-decaborate cage, including its protonation, cage-opening and cage oxidation reactions, is considered as well. A review with 242 references.

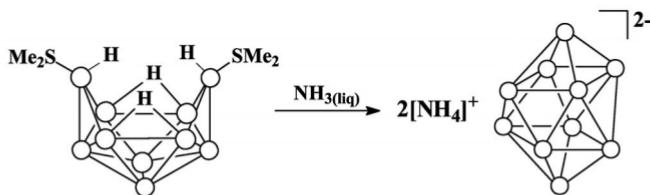
Keywords: *closo*-Decaborate; Boranes; Synthesis; Derivatives; Applications.

1. Introduction	1150
2. Synthesis of the $[B_{10}H_{10}]^{2-}$ Anion	1150
3. Salts and Complexes of the $[B_{10}H_{10}]^{2-}$ Anion	1152
4. The H-D Exchange and Protonation	1156
5. Derivatives with Boron-Halogen Bond	1157
6. Derivatives with Boron-Carbon Bond	1160
7. Derivatives with Boron-Nitrogen Bond	1166
8. Derivatives with Boron-Phosphorus Bond.	1176
9. Derivatives with Boron-Oxygen Bond	1176
10. Derivatives with Boron-Sulfur Bond	1180
11. Derivatives with Boron-Selenium Bond.	1183
12. Derivatives with Boron-Metal Bond	1183
13. Oxidation: $[B_{20}H_{18}]^{2-}$ and Related Species	1184
14. The B_{10} Cage Opening	1185
15. Potential Applications of the <i>closo</i> -Decaborate Anion	1188
16. References	1190

1. INTRODUCTION

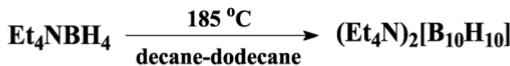

Last year it was 50th anniversary of the synthesis of decahydro-*closo*-decaborate anion, the first representative of the *closo*-borane family, which was reported by Hawthorne and Pritchelli¹. It was the first-born, however, at present it is not the first-string in the boron hydride team starring icosahedral carboranes $C_2B_{10}H_{12}$ ², *closo*-dodecaborate $[B_{12}H_{12}]^{2-}$ (ref.³), carba-*closo*-dodecaborate $[CB_{11}H_{12}]^-$ (ref.⁴) and cobalt bis(dicarbollide) $[3,3'-Co(1,2-C_2B_9H_{11})_2]^-$ (ref.⁵). Nevertheless, through the last fifty years salts, complexes and derivatives of the *closo*-decaborate anion have been the subject of many investigations. Due to non-icosahedral structure of the $[B_{10}H_{10}]^{2-}$ anion, having structure of bicapped square antiprism with two different types of boron atoms (five-coordinated apical and six-coordinated equatorial), some aspects of its chemistry are unique and have not analogies in the chemistry of icosahedral boron hydrides. Although the chemistry of the $[B_{10}H_{10}]^{2-}$ anion has been studied rather extensively, no reviews on this field have appeared for a long years after the first survey by Hawthorne⁶. Only very recently two reviews taking into consideration different aspects of the $[B_{10}H_{10}]^{2-}$ chemistry have been published^{7,8}. However, both these works do not cover all the field of research and are not easily readable due to language problems. Herein we present a review of the current state of the *closo*-decaborate chemistry with a special emphasis on the synthesis and properties of its substituted derivatives.

2. SYNTHESIS OF THE $[B_{10}H_{10}]^{2-}$ ANION


There are two general approaches to the synthesis of the decahydro-*closo*-decaborate anion. The first one is based on a closure of *nido*-decaborane skeleton. The preparative syntheses include reactions of decaborane^{1,9} or 6,9-bis(acetonitrile)decaborane¹ with triethylamine in refluxing benzene giving triethylammonium *closo*-decaborate $(Et_3NH)_2[B_{10}H_{10}]$ in 92% yield (Scheme 1a) or the reaction of 6,9-bis(dimethylsulfane)decaborane with liquid ammonia giving ammonium *closo*-decaborate $(NH_4)_2[B_{10}H_{10}]$ in 84% yield¹⁰ (Scheme 1b).

Related reactions are mechanochemical activation of 6,9-bis(ammonia)-decaborane and pyridine hydrochloride¹¹ and thermal decomposition of europium(II) and ytterbium(II) complexes of *arachno*-decaborate anion $(L)_xLn[B_{10}H_{14}]$ ($Ln = Eu, Yb$; $L = NH_3, MeCN$)¹² resulting in $(PyH)_2[B_{10}H_{10}]$ and $Eu[B_{10}H_{10}]$ and $Yb[B_{10}H_{10}]$, respectively. The above described methods allow one to produce the *closo*-decaborate anion in a straightforward and

a


b

SCHEME 1

high-yield way, however the absence of a commercial source of decaborane makes them uneconomical.

Alternative approach is based on solid state pyrolysis ($185\text{ }^\circ\text{C}$) of easily available tetraethylammonium tetrahydroborate resulting in tetraethylammonium *closo*-decaborate ($(\text{Et}_4\text{N})_2[\text{B}_{10}\text{H}_{10}]$) in up to 94% yield^{13–17}. ($\text{Et}_4\text{N})_2[\text{B}_{12}\text{H}_{12}]$, ($\text{Et}_4\text{N})_2[\text{B}_9\text{H}_9]$ and ($\text{Et}_4\text{N})[\text{B}_{11}\text{H}_{14}]$ were found to be the by-products of the pyrolysis process. It should be noted that the products ratio and the yield of the goal product of the solid state synthesis depend strongly on such factors as amount of the starting material, size and geometry of the reaction vessel, heating rate and conditions, etc. As a result, the results published by different research groups often could not be reproduced. This problem can be partially solved by using high-boiling hydrocarbons as reaction media. Thus, pyrolysis of ($\text{Et}_4\text{N})[\text{BH}_4]$ in refluxing decane-dodecane mixture at $185\text{ }^\circ\text{C}$ gives up to 50% of ($\text{Et}_4\text{N})_2[\text{B}_{10}\text{H}_{10}]$ ^{16,17} (Scheme 2).

SCHEME 2

The pyrolysis mechanism is not clear, nevertheless the octahydrotriborate anion ($[\text{B}_3\text{H}_8]^-$) is a key intermediate of the process. The study of solid state pyrolysis of tetraethylammonium octahydrotriborate at $185\text{ }^\circ\text{C}$

revealed formation of $(Et_4N)_2[B_{10}H_{10}]$ in up to 79% yield^{13,16}. Pyrolysis of $(Et_4N)[B_3H_8]$ in hydrocarbons (*trans*-decaline or decane–dodecane mixture) at 185 °C gives 28–47% of $(Et_4N)_2[B_{10}H_{10}]$ ^{16,18}. As in the solid state pyrolysis, $(Et_4N)_2[B_{12}H_{12}]$, $(Et_4N)_2[B_9H_9]$ and $(Et_4N)[B_{11}H_{14}]$ are the reaction by-products. It should be noted that the nature of the pyrolysis products is very sensitive to the cation nature. Thus, solid state pyrolysis of tetramethylammonium tetrahydroborate under similar conditions gives mainly trimethylamine borane. On the other hand, the solid state pyrolysis of $(Me_4N)[B_3H_8]$ results in nearly equimolar mixture of $(Me_4N)_2[B_{10}H_{10}]$ and $(Me_4N)_2[B_{12}H_{12}]$ ¹³. These results could be explained by participation of $Et_3N \cdot BH_3$ formed in the initial step of the $(Et_4N)[BH_4]$ pyrolysis during building up of the octahydrotriborate anion, whereas $Me_3N \cdot BH_3$ having lower boiling point leaves the reaction. The addition of triethylamine borane to $(Et_4N)[BH_4]$ or $(Et_4N)[B_3H_8]$ changes ratio of the pyrolysis products but does not increase the yield of the *closo*-decaborate anion^{16,17}. Solid state pyrolysis of $K[B_3H_8]$ at 185 °C produces nearly equimolar mixture of the $[B_{10}H_{10}]^{2-}$ and $[B_{12}H_{12}]^{2-}$ anions as well as some amount of $[B_{11}H_{14}]^-$ (ref.¹⁴), whereas increasing the temperature to 230 °C leads mainly to $[B_9H_9]^{2-}$ and $[B_{12}H_{12}]^{2-}$ (ref.¹⁹). Pyrolysis of $Rb[B_3H_8]$ at 230 °C gives a mixture of the $[B_9H_9]^{2-}$, $[B_{10}H_{10}]^{2-}$ and $[B_{12}H_{12}]^{2-}$ anions¹⁹. Pyrolysis of $Cs[B_3H_8]$ at 185 °C gives mainly $[B_{10}H_{10}]^{2-}$ and $[B_{11}H_{14}]^-$ (ref.¹³), whereas at 230 °C $[B_9H_9]^{2-}$, $[B_{10}H_{10}]^{2-}$ and $[B_{12}H_{12}]^{2-}$ are formed¹⁹. Solid state pyrolysis of $(n\text{-Pr}_4N)[B_3H_8]$ at 185 °C produces solely the $[B_{12}H_{12}]^{2-}$ anion, whereas the pyrolysis in hydrocarbons results in 20% of the *closo*-decaborate anion. In a similar way, solid state pyrolysis of $(n\text{-Bu}_4N)[B_3H_8]$ at 185 °C gives mainly $[B_{12}H_{12}]^{2-}$, whereas the pyrolysis in hydrocarbons results in nearly equimolar mixture of the $[B_{10}H_{10}]^{2-}$ and $[B_{12}H_{12}]^{2-}$ anions¹⁸. Closely related syntheses include reactions of sodium tetrahydroborate $Na[BH_4]$ and $R_3N \cdot BH_3$ ($R = Me, Et$) in dodecane in the presence of $AlCl_3$ at 180 °C producing the *closo*-decaborate anion in 32–41% yield²⁰ and pyrolysis of mixtures of $M[BH_4]$ and $(Et_4N)X$ ($M = Na, K$; $X = Cl, Br$) at 185 °C giving up to 76% of $(Et_4N)_2[B_{10}H_{10}]$ ^{21,22}. In general, the study of pyrolysis of various tetrahydroborates and octahydrotriborates revealed that the direction of the reaction and the yield of *closo*-borate anions depend strongly on nature of the cation, the temperature and the solvent used.

3. SALTS AND COMPLEXES OF THE $[B_{10}H_{10}]^{2-}$ ANION

At present, a number of salts of the *closo*-decaborate anion with various metal cations (lithium^{10,23}, sodium^{10,24}, potassium²⁴, rubidium^{24,25}, cesium¹⁰,

cobalt¹⁰, nickel¹⁰, rare earth metals^{12,26}) and ammonium cations (NH_4^+ (refs^{10,27,28}), MeNH_3^+ (ref.²⁷), Me_2NH_2^+ (ref.²⁷), Me_3NH^+ (ref.²⁹), Me_4N^+ (refs^{10,27}), EtNH_3^+ (ref.²⁷), Et_2NH_2^+ (ref.²⁷), Et_3NH^+ (refs^{29,30}), Et_4N^+ (refs^{13,27}), $n\text{-BuNH}_3^+$ (ref.²⁷), $n\text{-Bu}_2\text{NH}_2^+$ (ref.²⁷), $n\text{-Bu}_3\text{NH}^+$ (ref.²⁹), $n\text{-Bu}_4\text{N}^+$ (ref.²⁷), $t\text{-BuNH}_3^+$ (ref.¹⁰), H_2en^{2+} (ref.³¹), $(\text{CH}_2)_5\text{N}(\text{Me})\text{NH}_2^+$ (ref.³²), $\text{Me}_2\text{N}(\text{CH}_2\text{CH}_2)_2\text{NMe}_2^{2+}$ (ref.³²), $\text{NH}_2(\text{Me})\text{N}(\text{CH}_2\text{CH}_2)_2\text{N}(\text{Me})\text{NH}_2^{2+}$ (ref.³²), $\text{H}_2\text{dabco}^{2+}$ (ref.³³), Hpy^+ (ref.¹⁰), $N\text{-Mepy}^+$ (ref.³²), $N\text{-C}_{12}\text{H}_{25}\text{py}^+$ (ref.³⁴), $N\text{-NH}_2\text{py}^+$ (ref.³²), quinolinium⁺ (ref.¹⁰), H-2,2'-bipy^+ (ref.¹⁰), $\text{H(2-py)}_2\text{NH}^+$ (ref.³⁵), pseudocyanine⁺ (ref.³⁶), NH_2NH_3^+ (ref.³⁷), $\text{NH}_2\text{NMe}_3^+$ (ref.³²), $\text{Me}_2\text{N}(\text{NH}_2)_2^+$ (ref.³²), $[\text{CpFeC}_5\text{H}_4\text{CH}_2\text{NMe}_2\text{R}]^+$ and $[\text{Fe}(\text{C}_5\text{H}_4\text{CH}_2\text{NMe}_2\text{R})_2]^{2+}$ ($\text{R} = \text{Me, Et, Pr, CH}_2\text{CH=CH}_2, \text{CH}_2\text{C}\equiv\text{CH}$)³⁸, $[(\text{CpFeC}_5\text{H}_4\text{CH}_2\text{NMe}_2)_2\text{R}]^{2+}$ and $[\text{Fe}(\text{C}_5\text{H}_4\text{CH}_2\text{NMe}_2)_2\text{R}]^{2+}$ ($\text{R} = -(\text{CH}_2)_4^-, -\text{CH}_2\text{C}\equiv\text{CCH}_2^-$)³⁹), as well as sulfonium¹⁰, phosphonium⁴⁰⁻⁴³, arsonium⁴³ and guanidinium⁴⁴⁻⁴⁶ salts have been described.

The crystal structures of $\text{Na}_2[\text{B}_{10}\text{H}_{10}]^{24}$, $\text{K}_2[\text{B}_{10}\text{H}_{10}]^{24}$, $\text{Rb}_2[\text{B}_{10}\text{H}_{10}]^{24}$, $\text{Rb}_2[\text{B}_{10}\text{H}_{10}] \cdot 1.5\text{H}_2\text{O}^{25}$, $\text{Cs}[\text{Na}(\text{NH}_3)_6][\text{B}_{10}\text{H}_{10}] \cdot \text{NH}_3^{47}$, $(\text{NH}_4)_2[\text{B}_{10}\text{H}_{10}] \cdot 1.5\text{H}_2\text{O}^{28}$, $(\text{Me}_3\text{NH})_2[\text{B}_{10}\text{H}_{10}]^{48}$, $(\text{Et}_3\text{NH})_2[\text{B}_{10}\text{H}_{10}]^{30}$, $(N\text{-C}_{12}\text{H}_{25}\text{py})_2[\text{B}_{10}\text{H}_{10}]^{34}$, $(\text{H-2,2'-bipy})_2[\text{B}_{10}\text{H}_{10}]^{49}$, $(\text{H-2,2'-bipy})[\text{B}_{10}\text{H}_{10}]^{49}$, $(\text{H(2-py)}_2\text{NH})_2[\text{B}_{10}\text{H}_{10}] \cdot 2\text{H}_2\text{O}^{35}$, $[(2,2'\text{-}(1\text{-Et-1-NC}_9\text{H}_6)_2\text{CH})_2[\text{B}_{10}\text{H}_{10}]^{36}$, $[\text{CpFe}(\text{C}_5\text{H}_4\text{CH}_2\text{NMe}_3)]_2[\text{B}_{10}\text{H}_{10}]^{50}$, $(\text{Ph}_3\text{PEt})_2[\text{B}_{10}\text{H}_{10}]^{40}$ and $(\text{Et}_3\text{PNH}_2)_2[\text{B}_{10}\text{H}_{10}]^{43}$ have been determined by X-ray diffraction method. In some structures the $\text{NH}\cdots\text{HB}$ dihydrogen bonds between ammonium cation and the *closo*-decaborate anion were found^{28,30,33,43,48,49}.

It should be noted that the structure of the *closo*-decaborate anion was determined for the first time by X-ray diffraction study of the cuprous salt $\text{Cu}_2[\text{B}_{10}\text{H}_{10}]^{51}$. However, due to existence of strong interactions between the cations and anions, this compound should be considered as the polymeric complex rather than a simple salt. The characteristic feature of the Cu–H–B interactions is appearance of a broad IR absorption band at 2100–2300 cm^{-1} in addition to the terminal B–H stretching bands at 2510–2570 cm^{-1} (ref.⁵²). Later a series of “mixed salts” $\text{M}[\text{Cu}[\text{B}_{10}\text{H}_{10}]]$ ($\text{M} = \text{K}^+, \text{Cs}^+, \text{R}_2\text{NH}_2^+, \text{R}_3\text{NH}^+, \text{R}_4\text{N}^+$ ($\text{R} = \text{Me, Et, Bu}$), Ph_3P^+ , $\text{NaphCH}_2\text{PPh}_3^+$, Ph_4As^+) was prepared by the reaction of copper(II) chloride or sulfate with the corresponding *closo*-decaborates in aqueous solution^{41,53–55}. The single crystal X-ray diffraction study of $\text{Cs}[\text{Cu}[\text{B}_{10}\text{H}_{10}]]$, $(\text{Me}_2\text{NH}_2)[\text{Cu}[\text{B}_{10}\text{H}_{10}]]$ and $(\text{Et}_3\text{NH})[\text{Cu}[\text{B}_{10}\text{H}_{10}]]$ revealed that the Cu^+ cations and the $[\text{B}_{10}\text{H}_{10}]^{2-}$ anions form infinite polymeric anionic chains $\{[\text{Cu}[\text{B}_{10}\text{H}_{10}]]^+\}_\infty$ connected by the Cu–H–B bonds^{41,55,56}. The monomeric copper(I) complexes $\{(\text{Ph}_3\text{P})_2\text{Cu}\}_2\text{[B}_{10}\text{H}_{10}]^{56,57}$ and $\{(\text{MeCN})_2\text{Cu}\}_2\text{[B}_{10}\text{H}_{10}]^{59}$ were obtained by reactions in

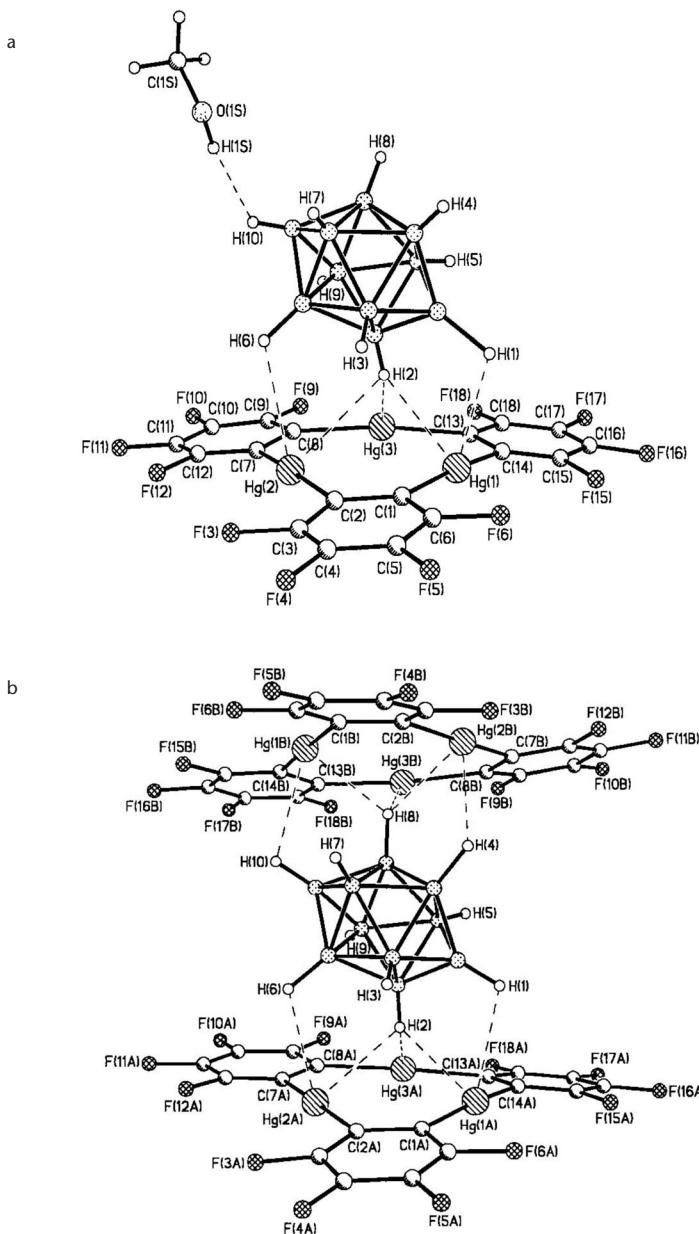


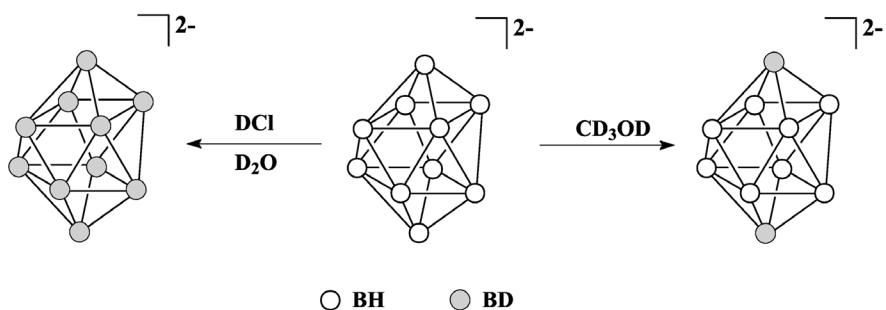
FIG. 1

Molecular structure of $(n\text{-Bu}_4\text{N})_2\{(o\text{-C}_6\text{F}_4\text{Hg})_3\}[\text{B}_{10}\text{H}_{10}]\cdot\text{MeOH}$ (a) and $(\text{PPN})_2\{(o\text{-C}_6\text{F}_4\text{Hg})_3\}_2\cdot[\text{B}_{10}\text{H}_{10}]\cdot\text{Et}_2\text{O}$ (b). Reproduced from ref.⁶⁶ with permission of Wiley–VCH Verlag GmbH & Co.

non-aqueous media and their structures were determined by single crystal X-ray diffraction method.

Synthesis of similar silver(I) complexes $\{\text{Ag}_2[\text{B}_{10}\text{H}_{10}]\}$ ¹⁰ and $\text{M}\{\text{Ag}[\text{B}_{10}\text{H}_{10}]\}$ ($\text{M} = \text{Cs}^+, \text{R}_2\text{NH}_2^+, \text{R}_3\text{NH}^+, \text{R}_4\text{N}^+$ ($\text{R} = \text{Me, Et, Pr, Bu}$))⁶⁰ was described and the crystal structures of $\text{Cs}\{\text{Ag}[\text{B}_{10}\text{H}_{10}]\}$ ⁶⁰, $(\text{Et}_3\text{NH})\{\text{Ag}[\text{B}_{10}\text{H}_{10}]\}$ ⁶⁰ and $\{\text{Ag}_2[\text{B}_{10}\text{H}_{10}](\text{DMF})\}$ ⁶¹ were determined by single crystal X-ray diffraction method. It should be noted that in the presence of both Cu^+ and Ag^+ cations the preferential coordination of the *closo*-decaborate anion to the silver cation takes place resulting in formation of $[\text{Cu}(\text{NCMe})_3]\{\text{Ag}[\text{B}_{10}\text{H}_{10}]\}$ ⁵⁹. Synthesis and structure of silver(I) complexes with triphenylphosphine ligand $\{(\text{Ph}_3\text{P})\text{Ag}_2[\text{B}_{10}\text{H}_{10}]\}_n$ ⁶², $\{(\text{Ph}_3\text{P})_2\text{Ag}\}_2[\text{B}_{10}\text{H}_{10}]$ ⁵⁸ were described. Complexation of the *closo*-decaborate anion with cyclic trinuclear copper and silver 3,5-bis(trifluoromethyl)pyrazolates $\{[3,5-(\text{CF}_3)_2\text{pz}]\text{Cu}\}_3$ and $\{[3,5-(\text{CF}_3)_2\text{pz}]\text{Ag}\}_3$ was reported⁶³.

Only few examples of other than copper(I) and silver(I) complexes containing the $[\text{B}_{10}\text{H}_{10}]^{2-}$ anion in the inner coordination sphere where reported. They are $\{(\text{Pb}(2,2'\text{-bipy})[\text{B}_{10}\text{H}_{10}]\}$, $\{(\text{Pb}(1,10\text{-phen})[\text{B}_{10}\text{H}_{10}]\}$ ⁶⁴, $\{cis-((\text{Ph}_3\text{P})_2\text{Pt})[\text{B}_{10}\text{H}_{10}]\}$ ⁶⁵ and the complexes with cyclic trimeric tetrafluoro-1,2-phenylene mercury and [12]-mercuracarborand-4. Crystal structures of $\{(\text{Pb}(2,2'\text{-bipy})[\text{B}_{10}\text{H}_{10}]\}$ ⁶⁴, $(n\text{-Bu}_4\text{N})_2\{(\text{o-C}_6\text{F}_4\text{Hg})_3\}[\text{B}_{10}\text{H}_{10}]$ ·MeOH (Fig. 1a)⁶⁶, $(\text{PPN})_2\{(\text{o-C}_6\text{F}_4\text{Hg})_3\}_2[\text{B}_{10}\text{H}_{10}]$ ·Et₂O (Fig. 1b)⁶⁶ and $(\text{Ph}_3\text{PMe})_4\{(\text{o-1,2-C}_2\text{B}_{10}\text{H}_8-9,12\text{-Et}_2\text{Hg})_4\}[\text{B}_{10}\text{H}_{10}]_2$ (Fig. 2)⁶⁷ were determined.


FIG. 2

Molecular structure of $(\text{Ph}_3\text{PMe})_4\{(\text{o-1,2-C}_2\text{B}_{10}\text{H}_8-9,12\text{-Et}_2\text{Hg})_4\}[\text{B}_{10}\text{H}_{10}]_2$. Reproduced from ref.⁶⁷ with permission of American Chemical Society

Syntheses of complexes of nickel^{10,35,67–73}, cobalt^{10,67–71,75,76}, iron^{77,78}, chromium⁷⁹, lead⁸⁰, cadmium⁸¹, rare earth metals^{82–86} and uranium⁸⁷, where *closo*-decaborate serves as outer-sphere anion, were reported. Crystal structures of $[\text{Cd}_2\{1,2-\text{C}_6\text{H}_4(\text{NH}_2)_2\}_5(\text{DMF})_4]\text{[B}_{10}\text{H}_{10}\text{]}_2$ (ref.⁸¹) and $[\text{UO}_2\{\text{OC}(\text{NH}_2)_2\}_5]\text{[B}_{10}\text{H}_{10}\text{]} \cdot 2\text{OC}(\text{NH}_2)_2$ (ref.^{87d}) were determined.

4. THE H-D EXCHANGE AND PROTONATION

In contrast to $[\text{B}_{12}\text{H}_{12}]^{2-}$, the *closo*-decaborate anion was found to be strongly hydrated in aqueous solutions. Water molecules were considered to hydrogen bond mainly at the two apical vertex of the $[\text{B}_{10}\text{H}_{10}]^{2-}$ anion⁸⁸. There is rapid proton exchange between water and the *closo*-decaborate anion under acidic conditions. This effect is clearly evidenced by rapid changes in the characteristic ^{11}B NMR spectrum of solution of the $[\text{B}_{10}\text{H}_{10}]^{2-}$ anion in D_2O on addition of catalytic amount of DCl resulting in the perdeuterated product $[\text{B}_{10}\text{D}_{10}]^{2-}$ (Scheme 3). The H-D exchange at the apical vertex was found to proceed five times faster than at the equatorial vertex and 330-fold faster than in $[\text{B}_{12}\text{H}_{12}]^{2-}$ (ref.¹⁰).

SCHEME 3

The selectively deuterated *closo*-decaborate anion $[\text{1,10-B}_{10}\text{H}_8\text{D}_2]^{2-}$ was prepared by the reaction of $[\text{B}_{10}\text{H}_{10}]^{2-}$ with methanol- d_4 at room temperature⁸⁹ (Scheme 3). The selective H-D exchange could be explained by preferable solvation at the apical vertex of the *closo*-decaborate anion⁹⁰. Somewhat later the effect of various substituents on the H-D exchange in *closo*-decaborate derivatives was studied⁹¹.

In aqueous solution the acid form of the *closo*-decaborate anion exhibits properties of strong acid comparable to sulfuric acid and can be isolated in the solid state as the tetrahydrate¹⁰. In non-aqueous solutions *closo*-decaborate reacts with strong acids with formation of the protonated form $[\text{B}_{10}\text{H}_{11}]^-$. Protonation of the $[\text{B}_{10}\text{H}_{10}]^{2-}$ anion with formation of $[\text{B}_{10}\text{H}_{11}]^-$

was first reported at the beginning of the 1970s⁹². Although a series of salts of the $[B_{10}H_{11}]^-$ anion with various cations (R_4N^+ ($R = Me, Et, Pr, Bu$), Ph_3RP^+ ($R = Et, Ph, CH_2Ph$), Ph_4As^+) has been prepared⁹³⁻⁹⁵, our knowledge on the nature of this species until recently was based mainly on the NMR spectroscopy data⁹²⁻⁹⁴ and quantum chemical calculations^{93,96}. The early published structural studies of $(Ph_4P)[B_{10}H_{11}]$ and $(Ph_3PEt)[B_{10}H_{11}]$ could not refine the position of the extra proton associated with the B_{10} cluster⁹⁷. More recently the exact structure of the $[B_{10}H_{11}]^-$ anion was determined by single crystal diffraction study of $(Ph_3PCH_2Ph)[B_{10}H_{11}]$ (Fig. 3a)⁹³ and $(Ph_3PCH_2Naph)[B_{10}H_{11}]$ ⁴⁰. The 11th hydrogen atom asymmetrically caps a polar face of the B_{10} cluster (the $B_{ap}-H_{(11)}$ and $B_{eq}-H_{(11)}$ bond lengths for $(Ph_3PCH_2Ph)[B_{10}H_{11}]$ were found to be 1.20 and 1.54 Å at -123 °C, and 1.07 and 1.55 Å at 24 °C, respectively). The significant elongation of bonds lengths between the boron atoms that are capped by the 11th hydrogen was found as well⁹³. In solution, migration of the extra hydrogen atom H^* over the neighbor polar faces complicated by an exchange process between the $H(1)$ and H^* atoms takes place. The fluxional behavior of $H(1)$ and H^* can be stopped at low temperatures (-90 °C) (Fig. 3b)⁹³.

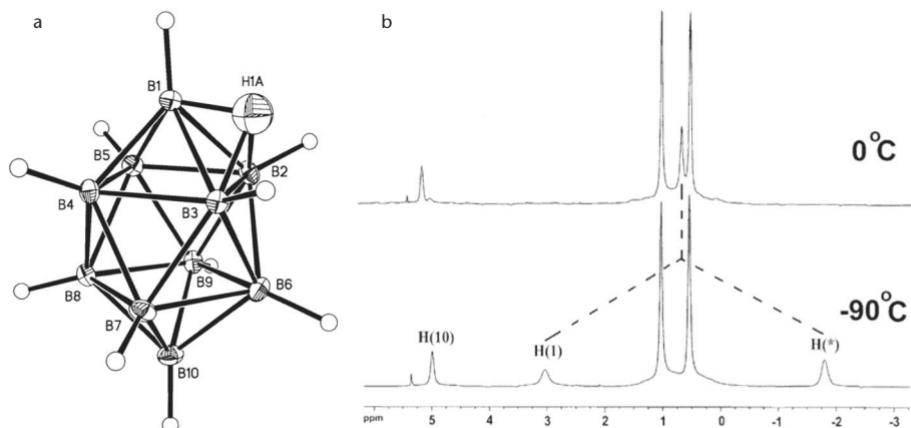
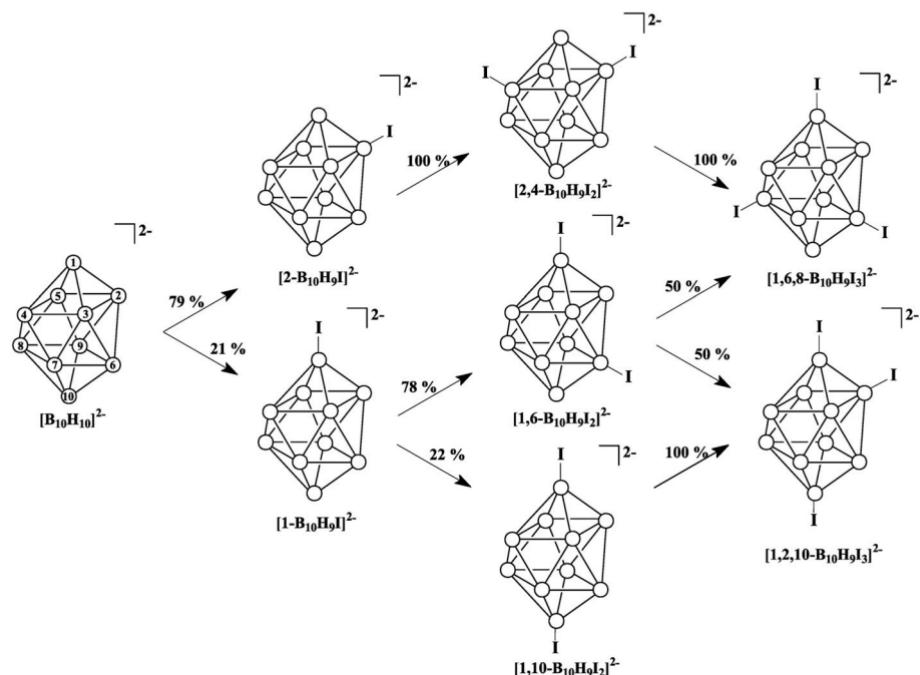


FIG. 3

Structure of the $[B_{10}H_{11}]^-$ at 24 °C (a) and $^1H\{^{11}B\}$ spectra of $[PPh_4][B_{10}H_{11}]$ at -90 and 0 °C (b). Reproduced from ref.⁹³ with permission of American Chemical Society

5. DERIVATIVES WITH BORON-HALOGEN BOND

Halogenations of the *closo*-decaborate anion were studied repeatedly by several research groups. In contrast to the $[B_{12}H_{12}]^{2-}$ anion, treatment of *closo*-decaborate with liquid hydrogen fluoride at various temperatures ranging

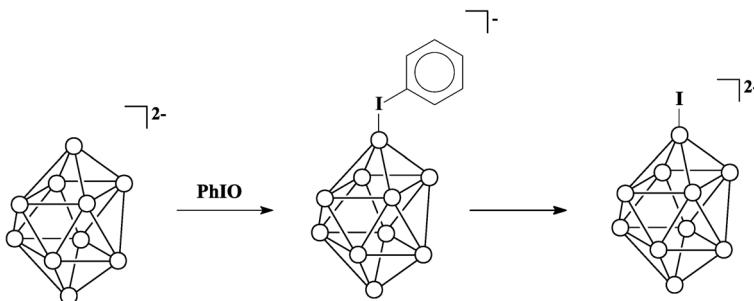

from -70 to +25 °C does not produce any decaborate fluoro derivative, but results in the cage degradation^{98,99}. The fluorination with 1-chloromethyl-4-fluoro-1,4-diazaoniabicyclo[2.2.2]octane bis(tetrafluoroborate) gives a mixture of mono-, di- and trifluoro derivatives that were partially separated by column chromatography^{99,100}. Synthesis of [2-B₁₀H₉F]²⁻ by the reaction of 5-F-6,9-(Me₂S)₂B₁₀H₁₁ with liquid ammonia has been described¹⁰¹. The crystal structures of [Ag(MeCN)₃]₂{Ag₂[2-B₁₀H₉F]₂}⁹⁹ and (Ph₄P)₂[1,10-B₁₀H₈F₂]₃CH₂Cl₂ (ref.¹⁰⁰) were determined.

Chlorination of [B₁₀H₁₀]²⁻ with gaseous chlorine in aqueous solution gives a mixture of derivatives with different substitution level [B₁₀H_{10-x}Cl_x]²⁻ ($x = 1-10$) that can be separated by electrophoresis or ion exchange chromatography^{23,102-105}. Formation of a mixture of mono-, di- and trichloro derivatives in the reaction of *closo*-decaborate with hydrogen chloride in 1,2-dichloroethane was reported¹⁰⁶. The reaction of [B₁₀H₁₀]²⁻ with triphenylmethyl chloride, 1-bromoadamantane or *n*-butylbromide in 1,2-dichloroethane was found to produce selectively [2-B₁₀H₉Cl]²⁻ (ref.¹⁰⁷). Minor amounts of mono-, di- and trichloro derivatives were obtained as by-products in the oxidation of [B₁₀H₁₀]²⁻ with FeCl₃, whereas the oxidation with KClO₃ gave tetrachloro derivative as the reaction by-product¹⁰⁸. Syntheses of complexes of iron¹⁰⁹, platinum¹¹⁰, palladium¹¹¹, lead¹¹² and uranium^{87b,87c,113} with chloro derivatives of the *closo*-decaborate anion were reported. The crystal structures of [(C₅H₅N)₂CH₂][2-B₁₀H₉Cl]¹¹⁴ and (Me₄N)[1,6,8-B₁₀H₇Cl₃]¹¹⁵ were determined by single crystal X-ray diffraction. The perchloro derivative *closo*-[B₁₀Cl₁₀]²⁻ was found to undergo reversible oxidation at $E_{1/2} = 1.01$ V versus Fc/Fc⁺ in acetonitrile with formation of violet radical anion *hypercloso*-[B₁₀Cl₁₀]²⁻ (refs^{105,116}). The same result can be obtained by the chemical oxidation with Ce^{IV} (ref.¹¹³) or Tl³⁺ (ref.¹⁰⁵) in acetonitrile, by the treatment with SO₂Cl₂ in dichloromethane¹¹⁶ or by the controlled dehydration of H₂[B₁₀Cl₁₀]⁻·7.5H₂O at 100–160 °C¹¹⁷.

Bromination of [B₁₀H₁₀]²⁻ with bromine in water at 0 °C gives a mixture of derivatives with different substitution level [B₁₀H_{10-x}Br_x]²⁻ ($x = 1-6$) that can be separated by chromatography methods¹⁰²⁻¹⁰⁴. The reaction of [B₁₀H₁₀]²⁻ with 1,2-dibromoethane in the presence of triphenylmethyl chloride, 1-bromoadamantane or *n*-butylbromide as activators was found to produce selectively [2-B₁₀H₉Br]²⁻ (ref.¹⁰⁷). Preparations of [2-B₁₀H₉Br]²⁻ by reaction of 5-Br-6,9-(Me₂S)₂B₁₀H₁₁ with liquid ammonia¹⁰¹ and reaction of 2-Br-6,9-(Et₂S)₂B₁₀H₁₁ with triethylamine in benzene or toluene⁴² have been described as well. The perbromo derivative [B₁₀Br₁₀]²⁻ was prepared by the reaction of [B₁₀H₁₀]²⁻ with excess of bromine in refluxing ethanol^{102,105}. Syntheses of complexes of nickel⁶⁸, iron¹⁰⁹, platinum^{68,110} and palla-

dium^{68,111,118} with bromo derivatives of the *clos*-decaborate anion were reported. Crystal structures of $[(C_5H_5N)_2CH_2][2-B_{10}H_9Br]$ ¹¹⁴, $Cs_2[B_{10}Br_{10}] \cdot 2H_2O$ ¹⁰⁵ and $[(\eta^3-C_3H_5)Pd(MeCN)_2]_2[B_{10}Br_{10}] \cdot C_6H_6$ ^{118b} were determined. The perbromo derivative *clos*- $[B_{10}Br_{10}]^{2-}$ was found to undergo reversible oxidation at $E_{1/2} = 1.14$ V versus Fe/Fe^+ in acetonitrile with formation of black radical anion *hyperclos*- $[B_{10}Br_{10}]^{\bullet-}$ (ref.¹⁰⁵).

Iodination of $[B_{10}H_{10}]^{2-}$ with iodine at 0–25 °C gives a mixture of iodo derivatives $[B_{10}H_{10-x}I_x]^{2-}$ ($x = 1$ –4) that can be effectively separated by electrophoresis or ion exchange chromatography^{102–104,119}. The reaction pathway was determined based on the analysis of the products distribution (Scheme 4)¹¹⁹. The equatorially substituted iodo derivative $[2-B_{10}H_9I]^{2-}$ can be prepared by the reaction of $[B_{10}H_{10}]^{2-}$ with iodine at –70 °C in ethanol¹²⁰ or by reaction of 5-I-6,9-(Me₂S)₂B₁₀H₁₁ with liquid ammonia¹⁰¹.

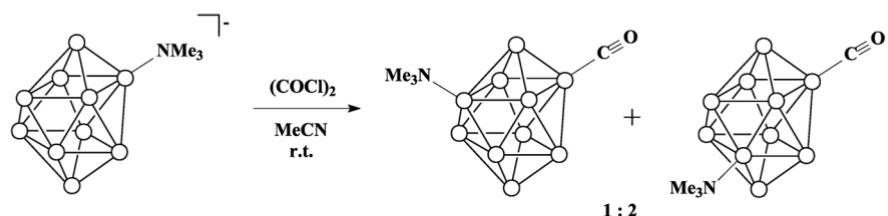
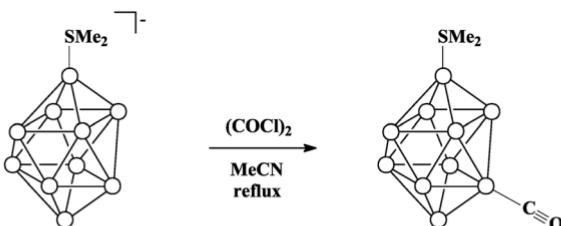
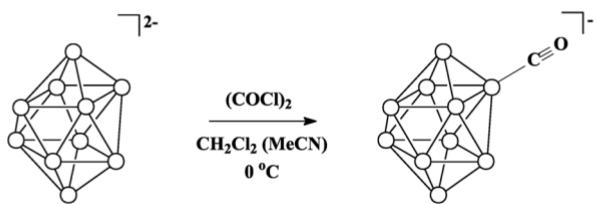


SCHEME 4

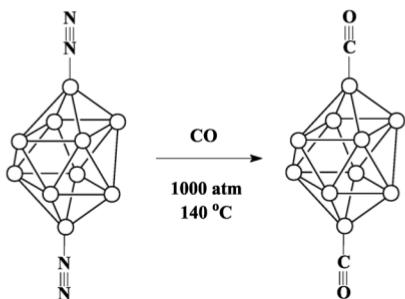
The apically substituted iodo derivative $[1-B_{10}H_9I]^{2-}$ was prepared by photolytic or electrolytic reduction of the 1-phenyliodonium derivative (Scheme 5)¹²¹.

The hexaiodo derivative $[B_{10}H_4I_6]^{2-}$ was prepared by the reaction of $[B_{10}H_{10}]^{2-}$ with iodine in refluxing ethanol and the periodo derivative

$[B_{10}I_{10}]^{2-}$ was synthesized by the treatment of the hexaiodo derivative with iodine monochloride¹⁰². Crystal structures of $[(C_5H_5N)_2CH_2][1\text{-}B_{10}H_9I]$ ¹²² and $[(C_5H_5N)_2CH_2][2\text{-}B_{10}H_9I]$ ¹¹⁴ were determined.

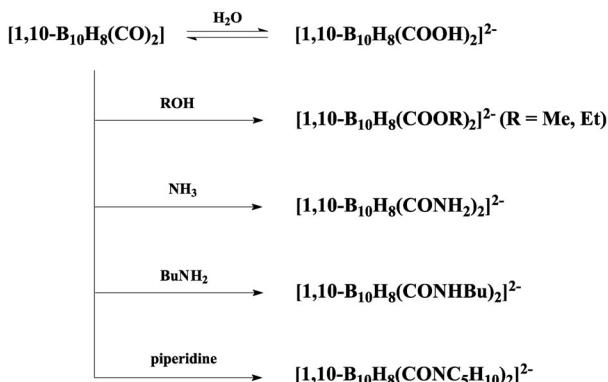



SCHEME 5

6. DERIVATIVES WITH BORON-CARBON BOND

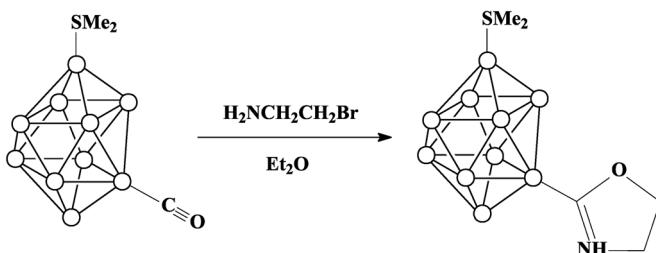

At present a large number of derivatives of the *closo*-decaborate anion with boron–carbon bond were described. The most interesting of them are carbonyl derivatives. The reaction of $[B_{10}H_{10}]^{2-}$ with oxalyl chloride in dichloromethane or acetonitrile at 0 °C results into the carbonyl derivative $[2\text{-}B_{10}H_9CO]^-$ in high yield (Scheme 6)¹²³. The reactions with $[1\text{-}B_{10}H_9SMe_2]^-$ and $[2\text{-}B_{10}H_9NMe_3]^-$ proceed in a similar way giving $[1,6\text{-}Me_2SB_{10}H_8CO]$ and the 1:2 mixture of $[2,4\text{-}Me_3NB_{10}H_8CO]$ and $[2,7(8)\text{-}Me_3NB_{10}H_8CO]$, respectively (Scheme 6)¹²⁴. Crystal structure of $(Ph_3PMe)[2\text{-}B_{10}H_9CO]$ was determined by single crystal X-ray diffraction method¹²³.

1,10-Dicarbonyl derivative $[1,10\text{-}B_{10}H_8(CO)_2]$ was prepared by high pressure reaction of 1,10-diazo derivative $[1,10\text{-}B_{10}H_8(N_2)_2]$ (see below) with carbon monoxide (100 MPa, 140 °C) (Scheme 7)¹²⁵. The reaction in cyclohexane results in the solvent C–H activation with formation of $[C_6H_{11}B_{10}H_7(CO)_2]$ and $[(C_6H_{11})_2B_{10}H_6(CO)_2]$ ¹²⁵. The products of C–H activation of methane ($[(CH_3)_2B_{10}H_7(CO)_2]$ and $[(CH_3)_2B_{10}H_6(CO)_2]$) and benzene ($[C_6H_5B_{10}H_7(CO)_2]$) were reported as well¹²⁶. The location of alkyl and aryl substituents was not established.

The dicarbonyl derivative $[1,10\text{-}B_{10}H_8(CO)_2]$ is colorless sublimable solid with good solubility in a variety of polar and nonpolar solvents. The dissolution in protic solvents is accompanied by solvolysis. On dissolution in water the carbonyl groups react with water to form the dicarboxylic acid ($pK_a \sim 9.1$ in water). The reaction is reversible and the dicarbonyl derivative can be regenerated by evaporation of aqueous solution of the acid form.


SCHEME 6

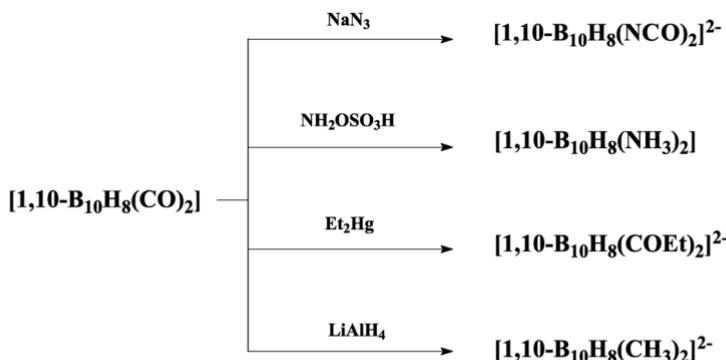
SCHEME 7


The reactions with alcohols and amines result in the corresponding esters and amides (Scheme 8)¹²⁷.

The monocarbonyl derivative $[2\text{-B}_{10}\text{H}_9\text{CO}]^-$ demonstrates a similar reactivity and its reactions with alcohols and amines were used for the synthesis of various derivatives including boron containing lipids¹²⁸, biotin and streptavidin¹²⁹ derivatives and some other compounds¹³⁰.

SCHEME 8

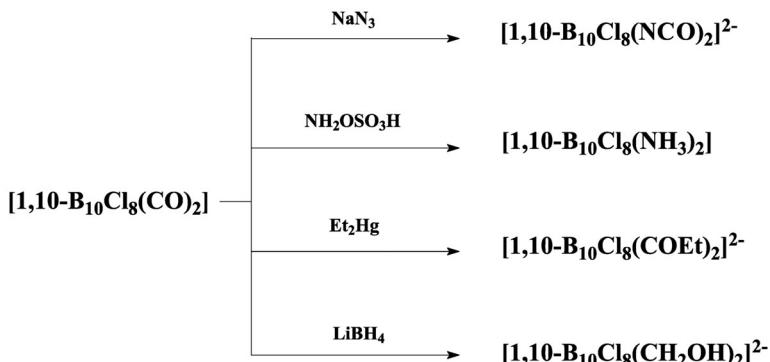
Formation of stable dihydrooxazole derivative in the reaction of $[1,6\text{-Me}_2\text{SB}_{10}\text{H}_8\text{CO}]$ with 2-bromoethylamine was reported (Scheme 9)¹³¹.



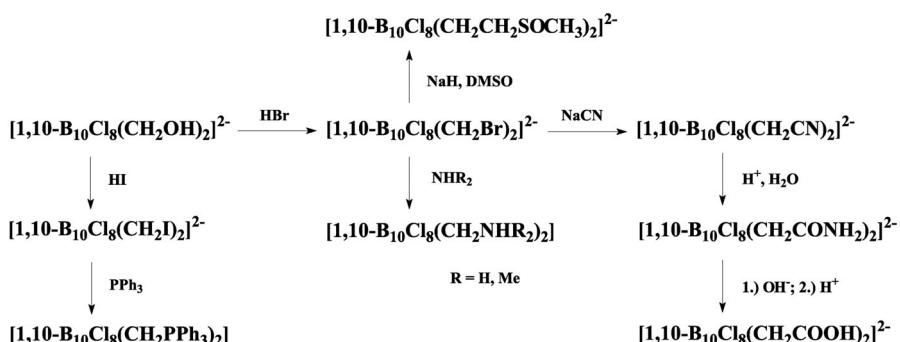
SCHEME 9

Other examples of high reactivity of carbonyl groups in *cis*-decaborate derivatives include reactions with sodium azide resulting in the corresponding isocyanate derivatives as products of a spontaneous Curtius rearrangement of the acyl azides formed^{123,124,127,132}, reactions with hydroxylamine-O-sulfonic acid giving the corresponding amino derivatives^{124,127,133}, reaction with diethylmercury producing the corresponding ketone¹²⁷. The reduction of $[1,10\text{-B}_{10}\text{H}_8(\text{CO})_2]$ with LiAlH_4 gives the corresponding dimethyl derivative (Scheme 10)¹²⁷, whereas the reduction of $[2\text{-B}_{10}\text{H}_9\text{CO}]^-$ under the same conditions results in the corresponding alcohol¹³⁰.

The carbonyl derivatives of the *cis*-decaborate anion can act as acylating agents in reactions with activated aromatics. Thus, the reaction of $[1,10\text{-B}_{10}\text{H}_8(\text{CO})_2]$ with *N,N*-dimethylaniline in refluxing acetonitrile produces aromatic diketone $[1,10\text{-B}_{10}\text{H}_8(\text{COC}_6\text{H}_4\text{-4-NMe}_2)_2]^{2-}$ (ref.¹³⁴). In a similar way, various carbonyl derivatives of the $[\text{B}_{10}\text{H}_{10}]^{2-}$ anion react with the parent *cis*-decaborate or some its derivatives with formation of a series of


bis(boranyl) ketones, exemplified by $[\text{Me}_2\text{SB}_{10}\text{H}_8\text{COB}_{10}\text{H}_9]^{3-}$. The carbonyl groups in these ketones are exceedingly basic, and they are isolated in the O-protonated form, e.g., $[\text{Me}_2\text{SB}_{10}\text{H}_8\text{COHB}_{10}\text{H}_9]^{2-}$. The $\text{B}_{10}\text{C}(\text{OH})\text{B}_{10}$ moiety in this compounds can be alternatively described as containing a stabilized carbonium ion¹³⁴.

SCHEME 10


The dicyanide $\text{Cs}_2[1,10\text{-B}_{10}\text{H}_8(\text{CN})_2]$ was obtained by the dehydratation of the amide $\text{Cs}_2[1,10\text{-B}_{10}\text{H}_8(\text{CONH}_2)_2]$ at $300\text{--}375\text{ }^\circ\text{C}$ ^{125a,135}. Treatment of the dicyano derivative with chlorine or bromine results in the corresponding perhalogenated derivatives $[1,10\text{-B}_{10}\text{X}_8(\text{CN})_2]^{2-}$ ($\text{X} = \text{Cl, Br}$)¹³⁶. The mixed cyano carbonyl derivative $[1,10\text{-B}_{10}\text{H}_8(\text{CN})\text{CO}]^-$ was prepared by the treatment of $\text{Cs}_2[1,10\text{-B}_{10}\text{H}_8(\text{CONH}_2)_2]$ with oxalyl chloride¹²⁷.

Halogenation of $[1,10\text{-B}_{10}\text{H}_8(\text{CO})_2]$ in non-aqueous media was found to be extremely slow. However, the halogenation with chlorine or bromine in aqueous solution easily gives the perhalogenated acids $[1,10\text{-B}_{10}\text{Cl}_8(\text{COOH})_2]^{2-}$ and $[1,10\text{-B}_{10}\text{Br}_8(\text{COOH})_2]^{2-}$. The periodo derivative $[1,10\text{-B}_{10}\text{I}_8(\text{COOH})_2]^{2-}$ was prepared by the treatment of $[1,10\text{-B}_{10}\text{H}_8(\text{COOH})_2]^{2-}$ with iodine monochloride in refluxing tetrachloroethane. The boron cage halogenation results in higher acidity of the halogenated derivatives ($\text{p}K_a \sim 7.5$ in water for $[1,10\text{-B}_{10}\text{Cl}_8(\text{COOH})_2]^{2-}$). The dehydration of the halogenated diacids produces the corresponding dicarbonyl derivatives $[1,10\text{-B}_{10}\text{X}_8(\text{CO})_2]$ ($\text{X} = \text{Cl, Br, I}$)¹²⁷. Reactivity of the halogenated dicarbonyl derivatives in general resembles that of the parent dicarbonyl compounds including reactions with sodium nitrite, hydroxylamine-O-sulfonic acid, organomercury compounds, etc. (Scheme 11)¹²⁷.

SCHEME 11

The reduction of $[1,10\text{-B}_{10}\text{Cl}_8(\text{CO})_2]$ with LiBH_4 in glyme results in the corresponding alcohol $[1,10\text{-B}_{10}\text{Cl}_8(\text{CH}_2\text{OH})_2]^{2-}$ (ref.¹³⁷). The hydroxy groups in the last compound are readily acylated by acetic anhydride and are easily replaced by bromine or iodine upon reaction with the corresponding hydrohalic acid. Similarly to benzyl halides, the halogen atoms in $[1,10\text{-B}_{10}\text{Cl}_8(\text{CH}_2\text{X})_2]^{2-}$ ($\text{X} = \text{Br, I}$) are readily replaced by various nucleophiles. The reaction with aqueous sodium cyanide produces the corresponding nitrile, which can be hydrolyzed to the corresponding amide and carboxylic acid $[1,10\text{-B}_{10}\text{Cl}_8(\text{CH}_2\text{COOH})_2]^{2-}$. The reactions with amines and phosphines result in the corresponding ammonium and phosphonium derivatives (Scheme 12)¹³⁷.

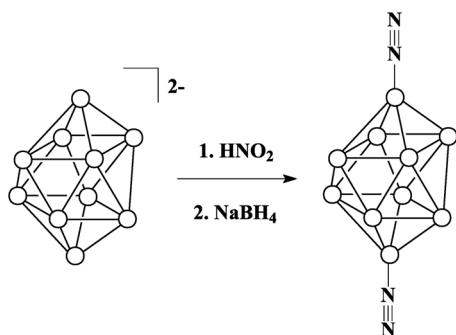
SCHEME 12

It should be noted here that synthetic utility of the carbonyl derivatives of the *closo*-decaborate anion is limited mainly to the easily accessible monocarbonyl compound $[2\text{-B}_{10}\text{H}_9\text{CO}]^-$.

The reaction of the *closo*-decaborate anion with benzoyl chloride results in the corresponding ketone $[2\text{-B}_{10}\text{H}_9\text{COPh}]^{2-}$ (refs^{130,138,139}). Kinetics of the reaction of $[\text{B}_{10}\text{H}_{10}]^{2-}$ with benzoyl chloride and benzoyl bromide in acetonitrile was studied⁹². In the presence of strong acids the formation of dark red protonated form takes place. The nature of the protonated form is not fully understood but probably involves the carbonyl group and not the boron cage. Reactions of the *closo*-decaborate anion with 4-methoxy-¹³⁰, 4-carboxy-¹³⁰ and 4-[bis(2-chloroethyl)amino]-¹³¹ benzoyl chlorides proceed in a similar way¹³¹. The ketonic character of the carbonyl group in $[2\text{-B}_{10}\text{H}_9\text{COAr}]^{2-}$ was demonstrated by their conversion to hydrazones¹³⁰ and semicarbazones^{138,139} using standard techniques and by Bayer–Villiger oxidation to $[2\text{-B}_{10}\text{H}_9\text{OC(O)Ph}]^{2-}$ by hydrogen peroxide^{138,139}. Chlorination and bromination of $[2\text{-B}_{10}\text{H}_9\text{COPh}]^{2-}$ with elemental halogens result in the corresponding halogenated ketones $[2\text{-B}_{10}\text{X}_9\text{OC(O)Ph}]^{2-}$ ($\text{X} = \text{Cl}, \text{Br}$)^{138,139}.

The reaction of the *closo*-decaborate acid with tropylium bromide results in highly colored stable tropylium derivative $[2\text{-B}_{10}\text{H}_9\text{C}_7\text{H}_6]^{2-}$. The strong hypsochromic shift of the long-wavelength absorption band of the tropylium derivative with increasing solvent polarity (from 439 nm in water (orange) to 536 nm in acetone (deep purple)) or decreasing cation radius in the solid state (the cesium salt is orange and the tetrabutylammonium salt is purple) suggests anion-to-cation charge transfer¹⁴⁰. Ab initio molecular orbital study of $[2\text{-B}_{10}\text{H}_9\text{C}_7\text{H}_6]^{2-}$ revealed the presence of an additional low lying bonding orbital, arising from complete delocalization of one pair of the cage electrons throughout the cage–ring system¹⁴¹.

Few alkyl derivatives of the *closo*-decaborate anion were obtained from the corresponding decaborane derivatives: the ethyl derivative $[2\text{-B}_{10}\text{H}_9\text{C}_2\text{H}_5]^{2-}$ was prepared by the reaction of a mixture of 1- and 2- $\text{B}_{10}\text{H}_{13}\text{C}_2\text{H}_5$ with triethylamine in refluxing benzene⁴²; the cyclohexyl derivative $[2\text{-B}_{10}\text{H}_9\text{C}_6\text{H}_{11}]^{2-}$ was prepared by the reaction of 6- C_6H_{11} -5-(CH_3)₂ $\text{SB}_{10}\text{H}_{11}$ with sodium hydride in refluxing tetrahydrofuran¹⁴². Unexpected formation of another alkyl derivative in the reaction of $[2\text{-B}_{10}\text{H}_9\text{NH}_3]^-$ with ethylene oxide producing $[\text{H}_3\text{NB}_{10}\text{H}_7(\text{CH}_2\text{CH}_2\text{OH})_2]^-$ as well as some transformations of this compound were reported, however the alkylation positions were not established¹⁴³.

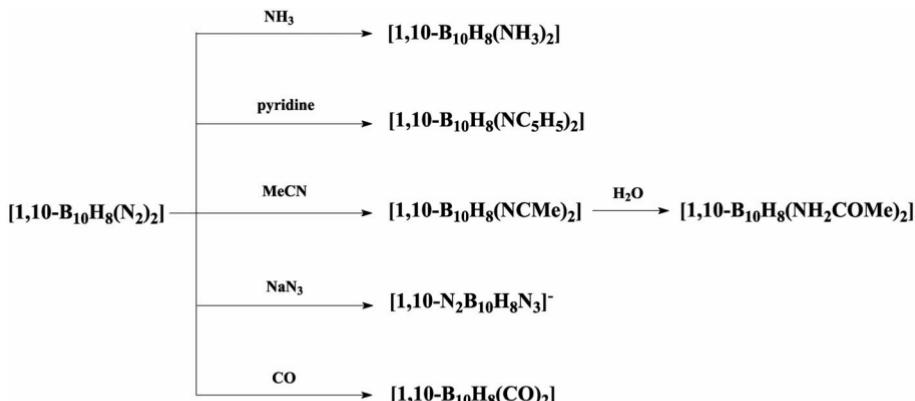

The product of C–H activation of the pyridine ring was obtained in the reaction of $(\text{Bu}_4\text{N})_2[\text{B}_{10}\text{H}_{10}]$ with di(2-pyridyl)amine. The structure of

$(\text{Ph}_4\text{P})_2[2\text{-}\{2\text{-}(2\text{-}(\text{C}_5\text{H}_4\text{N})\text{NH})(\text{C}_5\text{H}_3\text{N})\text{-}5\}\text{B}_{10}\text{H}_9]$ was determined by single crystal X-ray diffraction study¹⁴⁴.

UV irradiation of aqueous solution of decachloro-*closو*-decaborate $[\text{B}_{10}\text{Cl}_{10}]^{2-}$ in the presence of excess of potassium cyanide results in nucleophilic substitution of chlorine with formation of a mixture of cyano derivatives $[\text{B}_{10}\text{Cl}_{10-n}(\text{CN})_n]^{2-}$ ($n = 1\text{-}3$). The stereochemistry of the reaction products is unknown¹³⁶.

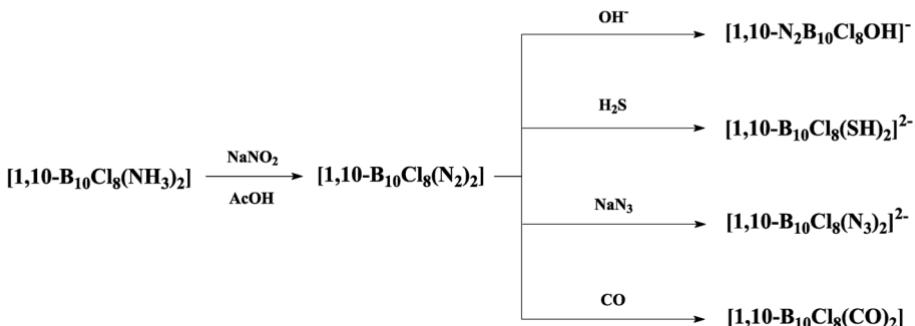
7. DERIVATIVES WITH BORON-NITROGEN BOND

The *closو*-decaborate compounds with boron-nitrogen bond form the most numerous group of its derivatives and are, as a rule, easily accessible. The most interesting of them are diazonium derivatives that are isoelectronic with the above described carbonyl derivatives. The reaction of aqueous solution of $(\text{NH}_4)_2[\text{B}_{10}\text{H}_{10}]$ with excess of nitrous acid followed by reduction of a precipitated intermediate with NaBH_4 in methanol or with Zn in HCl gives 1,10-bis(diazonium) derivative $[1,10\text{-B}_{10}\text{H}_8(\text{N}_2)_2]$ in a low (15–25%) yield (Scheme 13)¹²⁵. The reactions with $[1\text{-B}_{10}\text{H}_9\text{SMe}_2]^-$, $[2\text{-B}_{10}\text{H}_9\text{NMe}_3]^-$ and $[1,6\text{-Me}_2\text{SB}_{10}\text{H}_8\text{CO}]$ proceed in a similar way giving $[1,10\text{-N}_2\text{B}_{10}\text{H}_8\text{SMe}_2]$ ¹⁴⁵, $[1,6\text{-N}_2\text{B}_{10}\text{H}_8\text{NMe}_3]$ ¹³⁵ and $[1\text{-Me}_2\text{SB}_{10}\text{H}_7\text{-}6\text{-COOH-}10\text{-N}_2]$ ¹²⁴, respectively, in moderate yields.



SCHEME 13

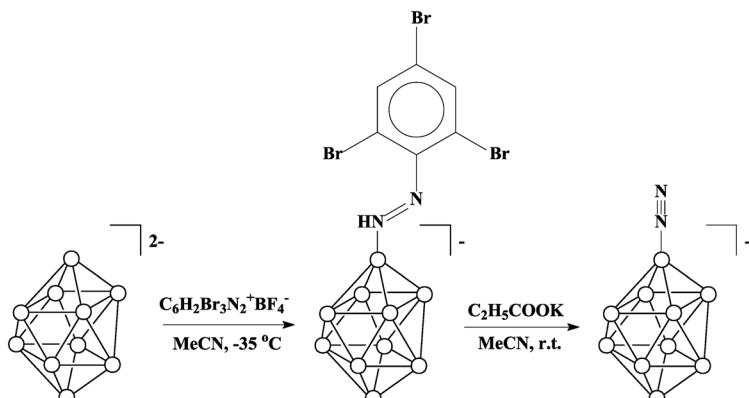
$[1,10\text{-B}_{10}\text{H}_8(\text{N}_2)_2]$ is a colorless, crystalline solid, stable toward air, water, diluted acids or bases. It is soluble in common organic solvents including benzene and insoluble in water. It sublimes readily in vacuo and begins to decompose at about 125 °C¹²⁵. Structure of $[1,10\text{-B}_{10}\text{H}_8(\text{N}_2)_2]$ was determined by single crystal X-ray diffraction¹⁴⁶.


Despite the remarkably high stability of the bis(diazonium) *closو*-decaborate derivative that contrasts with the reactivity of aromatic diazo-

nium salts, this group is very valuable in the $[B_{10}H_{10}]^{2-}$ chemistry because it is the only substituent found that is readily displaceable by a variety of nucleophiles. The examples include reactions with ammonia, pyridine, acetonitrile, carbon oxide, hydrazine, and sodium azide (Scheme 14)¹²⁵.

SCHEME 14

The halogenated derivatives $[1,10-B_{10}Cl_8(N_2)_2]$ and $[1,10-B_{10}I_8(N_2)_2]$ were prepared by diazotization of the corresponding amines. The reactivity of the chlorinated diazonium derivative resembles that of the non-halogenated analogue (Scheme 15)¹²⁵.


SCHEME 15

It should be noted that synthetic utility of the 1,10-bis(diazonium) derivatives is limited by a low yield of $[1,10-B_{10}H_8(N_2)_2]$. Consequently, the monosubstituted derivative $[1-B_{10}H_9N_2]^-$ attracts more interest. It can be obtained by the reaction of phenylazo derivatives of the *closo*-decaborate anion with weak bases (see below).

The reaction of $[B_{10}H_{10}]^{2-}$ with phenyldiazonium salts in acetonitrile results in highly colored phenylazo derivatives isolated in the *N*-protonated form $[1-B_{10}H_9NH=NC_6H_4X]^-$ ($X = H, 3-F, 4-F, 3-Br, 4-Br, 2,4,6-Br_3, 3-CH_3, 3-OCH_3, 4-OCH_3, 4-NHCOCH_3, 4-NHCOCF_3, 3-CF_3, 4-CF_3, 3-NO_2, 4-NO_2, 4-CN]$)¹⁴⁷⁻¹⁴⁹. The acidity of the protonated form depends on donor/acceptor properties of the substituent in the aromatic ring with pK_a varying from 6.98 for $X = 4-CH_3$ to 4.74 for $X = 4-NO_2$ ¹⁴⁷. The reactions with polycyclic aryl diazonium salts (1- and 2-naphthyl, 4-acenaphthyl diazonium, 4,4'-diphenylene bis(diazonium)) proceed in a similar way¹⁵⁰.

Reduction of the arylazo derivatives with zinc dust, basic hydrosulfite or tin in acidic methanol results in the corresponding amino derivative $[1-B_{10}H_9NH_3]^-$ (ref.¹⁴⁷). The same product was obtained by hydrogenation of $[1-B_{10}H_9NH=NC_6H_5]^-$ at 15–18 MPa on Pd/BaSO₄, Pd/C or Ni/Re catalyst¹⁵¹. The hydrogenation at atmospheric pressure gives the phenylhydrazine derivative $[1-B_{10}H_9NH_2NHC_6H_5]^-$. The last one is very air-sensitive and is easily oxidized to the phenylazo derivative¹⁵¹.

The diazonium derivative $[1-B_{10}H_9N_2]^-$ was prepared by the treatment of $[1-B_{10}H_9NH=NC_6H_2-2,4,6-Br_3]^-$ with sodium propionate in acetonitrile (Scheme)^{152,153}. Similarly to the bis(diazonium) derivative, $[1-B_{10}H_9N_2]^-$ is thermally stable and its tetramethylammonium salt decomposes at 140–160 °C with formation of $[B_{20}H_{18}]^{2-}$ (Scheme 16)¹⁵⁴. Crystal structures of (Et₃N)[1-B₁₀H₉N₂] and (Et₃N)[Cu(1-B₁₀H₉N₂)₂] (Fig. 4) were determined by single crystal X-ray diffraction (Fig. 4)¹⁵³. [1,10-N₂B₁₀H₈NMe₃], [1,6-N₂B₁₀H₈NMe₃], [1,10-N₂B₁₀H₈NC₅H₅] and [1,10-N₂B₁₀H₈SMe₂] were prepared in a similar way starting from $[1-B_{10}H_9NMe_3]^-$, $[2-B_{10}H_9NMe_3]^-$, $[1-B_{10}H_9NC_5H_5]^-$ and $[1-B_{10}H_9SMe_2]^-$, respectively¹⁵².

SCHEME 16

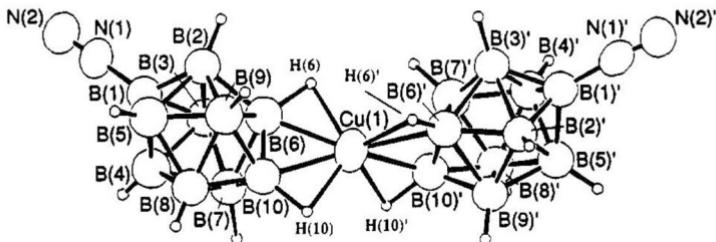
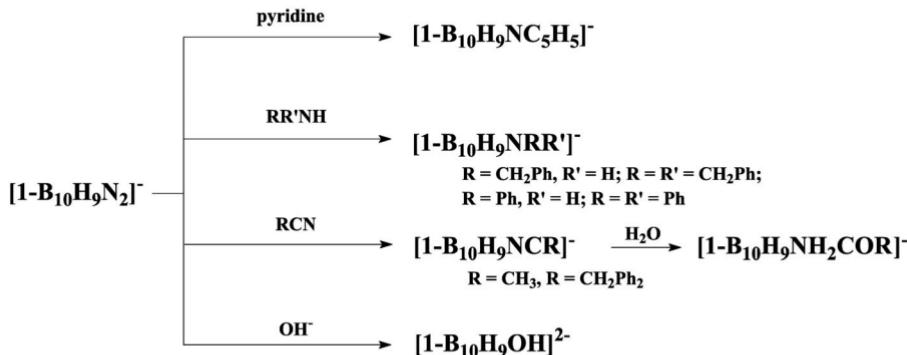



FIG. 4

Molecular structure of $(Et_3NH)[Cu(1-B_{10}H_9N_2)_2]$. Reproduced from ref.¹⁵³ with permission of American Chemical Society

Similarly to the bis(diazonium) derivatives, $[1-B_{10}H_9N_2]^-$ reacts with amines, nitriles and hydroxide ion with the formation of the corresponding derivatives (Scheme 17)^{152,155,156}.

SCHEME 17

The diazo group in the *closo*-decaborate derivatives can act as a two-electron donor in transition metal complexes and a series of ruthenium(II) complexes with $[1,10-N_2B_{10}H_8SMe_2]$ and $[1,10-B_{10}H_8(N_2)_2]$ as ligands was described. The Ru-N≡N-B moiety is very stable as shown by its inertness to hydrogen chloride, sodium tetrahydroborate, platinum-catalyzed hydrogenolysis, atmospheric oxidation, etc. (Scheme 18)¹⁵⁷. The crystal structure of $\{(Ph_3P)_3RuH_2[1,10-N_2B_{10}H_8SMe_2]\} \cdot 3C_6H_6$ was determined by single crystal X-ray diffraction (Fig. 5)¹⁵⁸.

The reaction of $[B_{10}H_{10}]^{2-}$ with hydroxylamine-O-sulfonic acid in aqueous solution results in mono- and diamino derivatives which are readily isolated in the *N*-protonated form due to their high basicity (Scheme 19)¹⁵⁹.

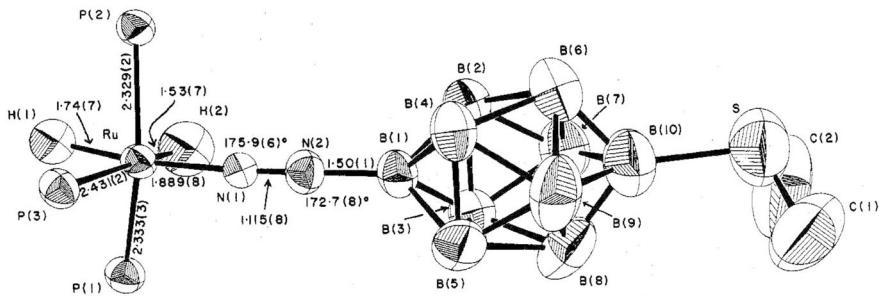
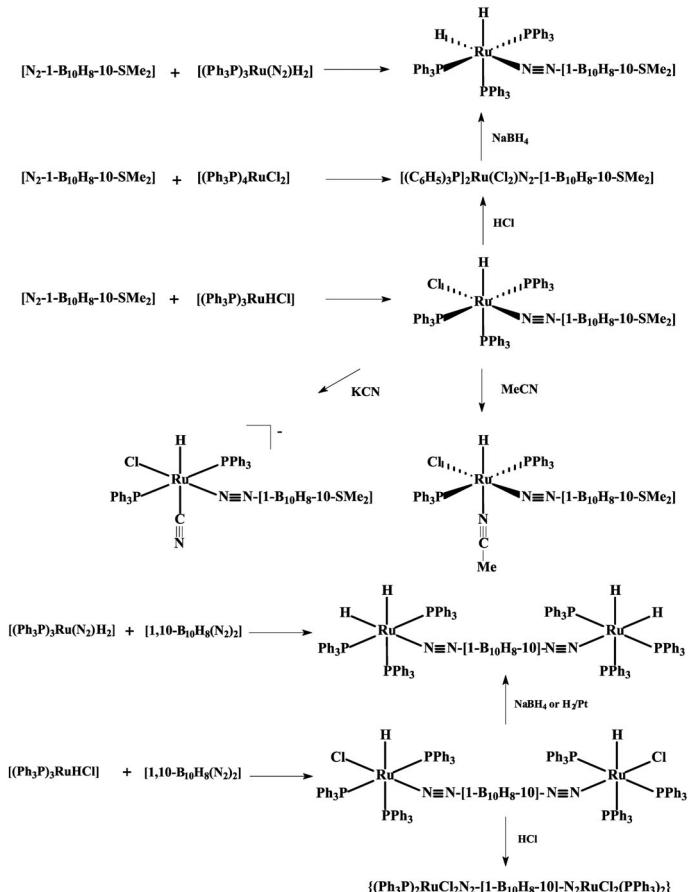
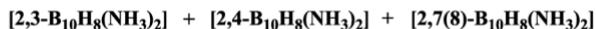
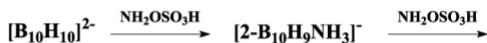
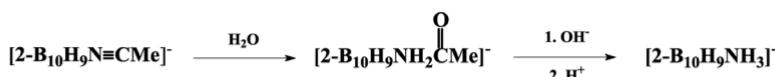





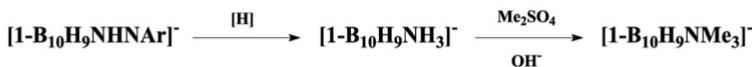
FIG. 5

Molecular structure of $\{(Ph_3P)_3RuH_2[1,10-N_2B_{10}H_8SMe_2]\} \cdot 3C_6H_6$. The phenyl groups of the triphenylphosphine ligands were omitted for clarity. Reproduced from ref.¹⁵⁸ with permission of American Chemical Society



SCHEME 18

SCHEME 19


More convenient method of synthesis of monosubstituted amino derivative $[\text{2-}\text{B}_{10}\text{H}_9\text{NH}_3]^-$ consist in hydrolysis of acetonitrilium derivative of the *closo*-decaborate anion (see below) (Scheme 20)¹⁶⁰.

SCHEME 20

Methylation of $[\text{2-}\text{B}_{10}\text{H}_9\text{NH}_3]^-$ with dimethyl sulfate gives $[\text{2-}\text{B}_{10}\text{H}_9\text{NHMe}_2]^-$ or $[\text{2-}\text{B}_{10}\text{H}_9\text{NMe}_3]^-$ depending on the reaction conditions, whereas methylation of a mixture of disubstituted derivatives produces the corresponding mixture of $[\text{2,3-}\text{B}_{10}\text{H}_8(\text{NMe}_3)_2]$, $[\text{2,4-}\text{B}_{10}\text{H}_8(\text{NMe}_3)_2]$ and $[\text{2,7(8)-}\text{B}_{10}\text{H}_8(\text{NMe}_3)_2]$ that can be separated by crystallization and chromatography on alumina¹⁵⁹.

The apically substituted derivatives $[\text{1-}\text{B}_{10}\text{H}_9\text{NH}_3]^-$ and $[\text{1-}\text{B}_{10}\text{H}_9\text{NMe}_3]^-$ were obtained by reduction of arylazo derivatives (Scheme 21)^{147,151}.

SCHEME 21

The preparation of $[\text{1-}\text{B}_{10}\text{H}_9\text{NH}_3]^-$ by reduction of the corresponding nitro derivative (see below) with aluminum in alkaline solution was reported as well¹⁶¹.

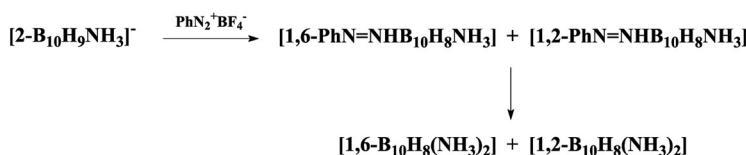
Six of seven possible isomers of disubstituted trimethylamino derivative $[\text{B}_{10}\text{H}_8(\text{NMe}_3)_2]$ were prepared using different synthetic approaches. The 1,6-isomer was prepared from $[\text{1,6-}\text{N}_2\text{B}_{10}\text{H}_8\text{NMe}_3]$ (see above) (Scheme 22)¹³⁵.

SCHEME 22

The 1,10-isomer can be prepared by the reaction of $[\text{1,10-}\text{B}_{10}\text{H}_8(\text{CO})_2]$ with hydroxylamine-O-sulfonic acid^{125a,127}, by the reaction of $[\text{1,10-}\text{B}_{10}\text{H}_8(\text{N})_2]$ with ammonia¹²⁵, or by the step-by-step approach via the 1-arylazo- and 1-diazonium derivatives¹⁴⁷. Similar halogenated derivatives $[\text{1,10-}\text{B}_{10}\text{Cl}_8]$

$(\text{NH}_3)_2$] and [1,10-B₁₀I₈(NH₃)₂] were prepared by the reaction of the corresponding carbonyl derivatives with hydroxylamine-O-sulfonic acid¹²⁵. The electron-withdrawing character of halogen substituents increases acidity of the protonated amine ($\text{p}K_a^{\text{MeCN}} = 12.2$ and 10.9 for [1,10-B₁₀H₈(NH₃)₂] and [1,10-B₁₀Cl₈(NH₃)₂], respectively^{125b}. The reaction of [1,10-B₁₀H₈(NH₃)₂] with dimethyl sulfate under basic conditions gives [1,10-B₁₀H₈(NMe₃)₂]¹⁵⁹.

The 2,7(8)-isomer was prepared by reduction of the corresponding chlorodimethylamino derivative obtained by the reaction of *closo*-decaborate with the Vilsmeier reagent [CICH=NMe₂]Cl (Scheme 23)¹⁶².

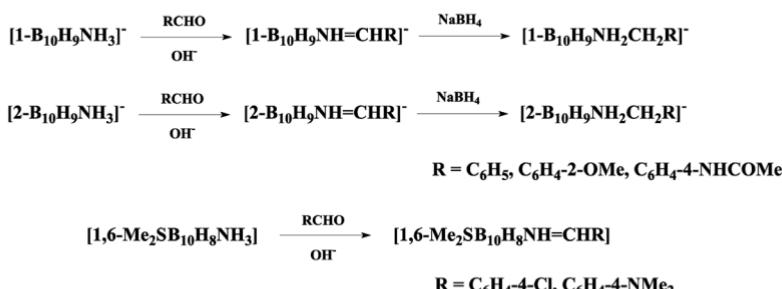


SCHEME 23

The reaction is rather selective and produces only small amount of the 2,6(9)-isomer¹⁶³. The reactions with the *N*-methylformanilide- and *N*-formylmorpholine-based Vilsmeier reagents proceed in a similar way giving [2,7(8)-B₁₀H₈(NMePh(CH₂Cl))₂] and [2,7(8)-B₁₀H₈(N(CH₂Cl)-(CH₂CH₂O)₂)] as the main products¹⁶³.

Synthesis of optically active [2,7-B₁₀H₈(NMe₃)₂] and [2,8-B₁₀H₈(NMe₃)₂] was achieved in the following way. The reaction of [2-B₁₀H₉NMe₃]⁻ with oxalyl chloride in acetonitrile gave a 1:2 mixture of [2,4-Me₃NB₁₀H₈CO] and [2,7(8)-Me₃NB₁₀H₈CO]. Treatment of this mixture with aqueous brucine hydrochloride gave a mixture of [brucine-H][Me₃NB₁₀H₈COOH], from which the highly soluble 2,4-isomer was removed by warm ethanol. Fractional crystallization of the remaining mixture of diastereomeric salts from ethanol-acetonitrile followed by reconversion of carboxyl group to the carbonyl one gave the 2,7- and 2,8-enantiomers of [Me₃NB₁₀H₈CO]. The carbonyl derivatives were transformed to the corresponding trimethylamine derivatives by the reaction with hydroxylamine-O-sulfonic acid followed by methylation with dimethylsulfate^{127,133}.

The 1,2-diamino derivative [1,2-B₁₀H₈(NH₃)₂] was obtained as a minor product in the reaction of [2-B₁₀H₉NH₃]⁻ with phenyldiazonium tetrafluoroborate followed by reduction of a mixture of the phenylazo derivatives (Scheme 24)¹⁶⁰.

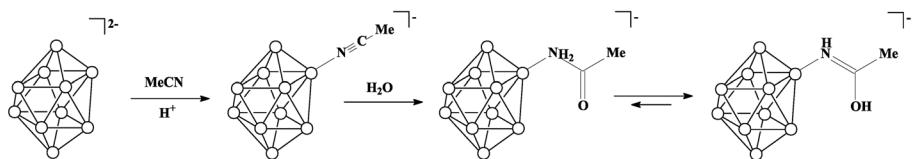

SCHEME 24

Individual isomers of the bis(trimethylamino) derivative undergoes isomerization at 300 °C to give an equilibrium mixture of isomers with dominating 2,7(8)- and 1,6-isomers. The least stable 2,3-isomer undergoes to isomerization at a lower temperature and at 230 °C rearranges exclusively to the 1,6-isomer¹³⁵.

The crystal structures of (Ph₄P)[1-B₁₀H₉NH₃]¹⁵¹, [2,7(8)-B₁₀H₈(NMe₂CH₂Cl)₂]¹⁶³ and [3(5)-Me-7(8)-Cl-2,8(7)-B₁₀H₆(NMe₂CH₂Cl)₂]¹⁶³ were determined by single crystal X-ray diffraction.

A series of alkylamino derivatives [1-B₁₀H₉NR₂R']⁻ and [2-B₁₀H₉NR₂R']⁻ were prepared by removal of the extra N-proton with strong bases (sodium hydride or potassium hydroxide) followed by the reaction with various alkyl halides^{143,155,164}.

The reactions of the amino derivatives with aromatic aldehydes in the presence of catalytic amounts of alkali give the corresponding Schiff bases. The last ones can be reduced with sodium tetrahydroborate to the corresponding benzylamino derivatives (Scheme 25)^{145,151,160,165}.

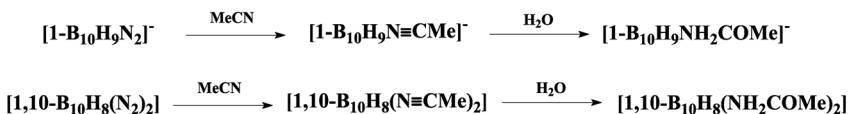

SCHEME 25

The reaction of the *closo*-decaborate anion [B₁₀H₁₀]²⁻ with acetonitrile in the presence of strong acids results in the nitrilium derivative [2-B₁₀H₉N≡CMe]⁻ (refs^{160,166-168}). The nitrilium derivative is easily hydrolyzed with water to give the corresponding amide which was isolated in the O-protonated tautomeric form (Scheme 26)¹⁶⁰.

In a similar way, the reactions of [2-B₁₀H₉N≡CMe]⁻ with aliphatic alcohols ROH result in the corresponding imidates [2-B₁₀H₉NH=C(Me)OR]⁻ (R = Me, Et, *n*-Pr, *i*-Pr, *n*-Bu, *i*-Bu, *n*-amyl, *i*-amyl, *n*-hexyl, CH₂CH₂OEt)¹⁶⁹.

The reactions with butyronitrile⁸⁶, acrylonitrile¹⁷⁰ and benzonitrile^{166,171} proceed in a similar way. A series of rare earth metal complexes with the butyramido⁸⁶ and acrylamido^{170a} derivatives was prepared.

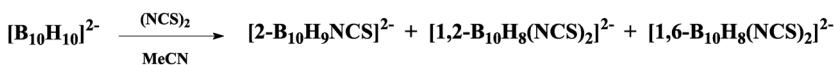
The benzoylamido derivative [2-B₁₀H₉NH=C(OH)Ph]⁻ was prepared also by the reaction of [2-B₁₀H₉NH₃]⁻ with benzoyl chloride (Scheme 27)¹⁴³.


SCHEME 26

SCHEME 27

Crystal structures of $(Et_3NH)[2-B_{10}H_9N\equiv CCH_3]$ ¹⁶⁶, $(Ph_4P)[2-B_{10}H_9N\equiv CCH_3]$ ¹⁶⁸, $(Bu_4N)[2-B_{10}H_9NH=C(OH)CH_3]$ ¹⁶⁰, $(Et_4N)[2-B_{10}H_9NH=C(OH)CH=CH_2]$ ^{170b}, $(Ph_4P)[2-B_{10}H_9NH=C(OH)C_6H_5]$ ¹⁷¹, and $(Bu_4N)[2-B_{10}H_9NH=C(OC_4H_9)CH_3]$ ¹⁶⁹ were determined.

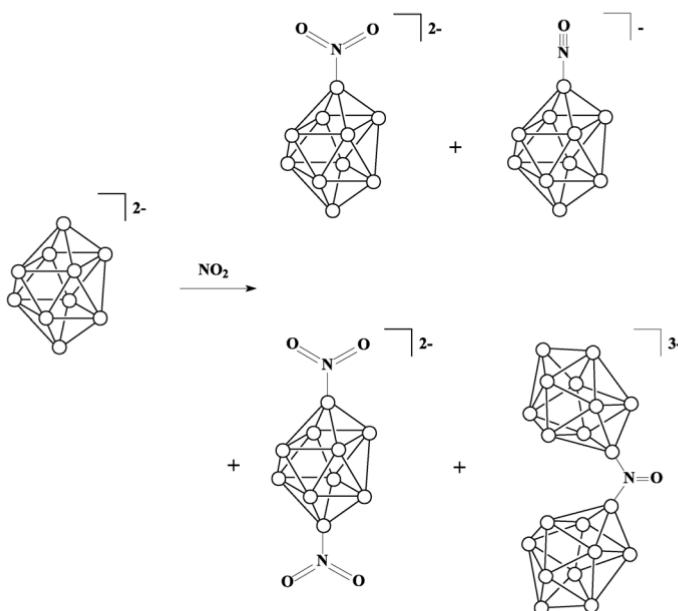
The apically substituted nitrilium and amido derivatives were obtained by the reaction of the diazonium derivatives with acetonitrile followed by hydrolysis (Scheme 28)^{125,155}.



SCHEME 28

Formation of trace amounts of diamide $[B_{10}H_8(NH_2COMe)_2]$ in the reaction of oxidation *cis*-*cis*-decaborate with $FeCl_3$ in acetonitrile was reported¹⁷².

The isocyanate derivatives of the *cis*-*cis*-decaborate anion can be prepared by the reaction of the corresponding carbonyl derivatives (see above) with sodium azide^{123–125,132,149}. The reaction of the isocyanates with alcohols produces urethanes¹⁴⁹ whereas acid hydrolysis results in the corresponding amines^{124,125}.


The isothiocyanate derivatives were obtained by the treatment of *cis*-*cis*-decaborate with $(NCS)_2$ in acetonitrile (Scheme 29)¹⁷³.

SCHEME 29

The reaction of the *cis*-*cis*-decaborate anion with nitrogen dioxide in aqueous acetonitrile produces a mixture of nitro $[1-B_{10}H_9NO_2]^{2-}$ and $[1,10-B_{10}H_8(NO_2)_2]^{2-}$, nitroso $[1-B_{10}H_9NO]^-$ and bridged nitroso $[1,1'-\mu-NO]B_{10}H_8^-$.

$(B_{10}H_9)_2^{3-}$ derivatives that can be separated by ion-exchange chromatography on diethylaminoethyl cellulose^{174,175}. The last compound can be obtained also by reaction of *clos*-decaborate with nitric oxide and ferric chloride¹⁷⁴ or with ferric nitrate (Scheme 30)¹⁰⁸.

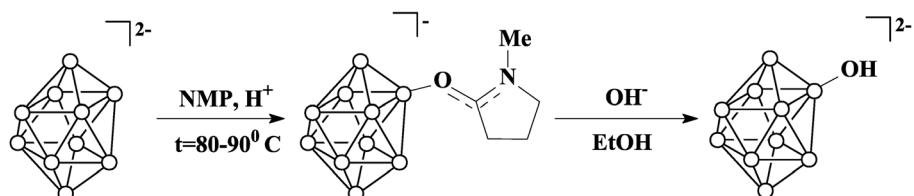
SCHEME 30

The structures of $[(C_5H_5N)_2CH_2][1-B_{10}H_9NO_2]$ ^{175a}, $(Ph_4P)_2[1,10-B_{10}H_8-(NO_2)_2]$ ^{175b}, $(Ph_4P)[1-B_{10}H_9NO]$ ^{175c} and $(Et_3NH)_3[1,1'-\mu-NO(B_{10}H_9)_2]$ ¹⁷⁶ were determined by single crystal X-ray diffraction method.

The bridged nitroso derivative can be halogenated using elemental fluorine, chlorine, bromine and iodine to give $[B_{20}H_{10}F_8NO]^{3-}$, $[B_{20}H_2Cl_{16}NO]^{3-}$, $[B_{20}H_4Cl_{14}NO]^{3-}$ and $[B_{20}H_{11}I_7NO]^{3-}$, respectively¹⁷⁴. The nitroso group can be reduced by hydrazine, hydroxylamine, sodium dithionite or Raney Ni-catalyzed hydrogenation resulting in $[1,1'-\mu-NH_2(B_{10}H_9)_2]^{3-}$ ¹⁷⁴. The amino group in this compound was of low basicity and rather unreactive. Acylation could be achieved only under forced conditions (heating in a mixture of acetic acid and acetic anhydride at 80 °C for 48 h)¹⁷⁴.

$[2,9-\{N,N'-(2-NHC_5H_4N)\}B_{10}H_8]^-$ was obtained in the reaction of *clos*-decaborate with 2-aminopyridine at 160 °C. The structure of $(Ph_4P)-[2,9-\{N,N'-(2-NHC_5H_4N)\}B_{10}H_8]$ was determined by single crystal X-ray diffraction¹⁷⁷.

8. DERIVATIVES WITH BORON-PHOSPHORUS BOND

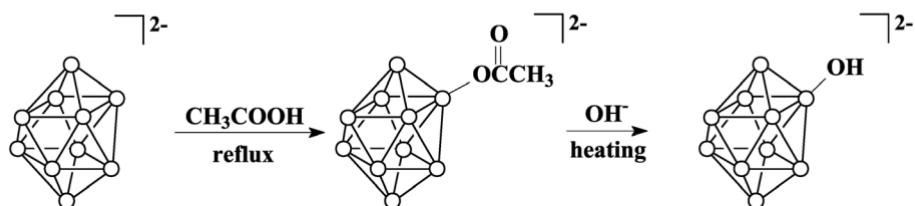

At present, only a few derivatives of the *closo*-decaborate anion with boron-phosphorus bond were reported and all these compounds were obtained in Pd-mediated substitution reactions. The reaction of $\text{Li}_2[\text{B}_{10}\text{H}_{10}]$ with $[(\text{PhMe}_2\text{P})_2\text{PdCl}_2]$ in dichloromethane at room temperature produced a mixture of $[1,10\text{-B}_{10}\text{H}_8(\text{PMe}_2\text{Ph})_2]$, $[2,7(8)\text{-B}_{10}\text{H}_8(\text{PMe}_2\text{Ph})_2]$ and $[1,6\text{-B}_{10}\text{H}_8(\text{PMe}_2\text{Ph})_2]$ that can be separated by column chromatography on silica¹⁷⁸. $[1,6\text{-B}_{10}\text{H}_8(\text{PPh}_3)_2]$ and $[2,4\text{-B}_{10}\text{H}_8(\text{PPh}_3)_2]$ were isolated from the reaction of $(\text{Et}_4\text{N})_2[\text{B}_{10}\text{H}_{10}]$ with $[(\text{Ph}_3\text{P})_2\text{PdCl}_2]$ in refluxing ethanol¹⁷⁹.

Formation of small amounts of $[1\text{-B}_{10}\text{H}_9\text{PHPh}_2]^-$ and $[1\text{-B}_{10}\text{H}_9\text{P}(\text{OH})\text{Ph}_2]^-$ in the reaction of $(\text{Me}_4\text{N})[1\text{-B}_{10}\text{H}_9\text{N}_2]$ with diphenylphosphine at 120 °C was reported. The similar reaction in the presence of $[(\text{Ph}_3\text{P})_2\text{PdCl}_2]$ and CuI at 150 °C gives mainly $[1\text{-B}_{10}\text{H}_9\text{PHPh}_2]^-$ and $[1\text{-B}_{10}\text{H}_9\text{P}(\text{OH})\text{Ph}_2]^-$ as well as some amounts of $[1,6\text{-B}_{10}\text{H}_8(\text{PHPh}_2)_2]$ and $[1,10\text{-B}_{10}\text{H}_8(\text{PHPh}_2)_2]$ ¹⁸⁰.

The crystal molecular structures of $[2,8\text{-B}_{10}\text{H}_8(\text{PMe}_2\text{Ph})_2]$ ¹⁷⁸, $[1,6\text{-B}_{10}\text{H}_8(\text{PPh}_3)_2]$ ^{179a} and $[2,4\text{-B}_{10}\text{H}_8(\text{PPh}_3)_2]\cdot\text{CH}_2\text{Cl}_2$ ^{179b} were determined.

9. DERIVATIVES WITH BORON-OXYGEN BOND

At present, several methods of synthesis of 2-hydroxy derivative of the *closo*-decaborate anion $[2\text{-B}_{10}\text{H}_9\text{OH}]^{2-}$ were proposed. One approach consists in the reaction of $[\text{B}_{10}\text{H}_{10}]^{2-}$ with amides in acidic media followed by alkaline hydrolysis of the formed intermediates. For example, heating the $[\text{B}_{10}\text{H}_{10}]^{2-}$ anion with 1-methylpyrrolidin-2-one (NMP) at 180 °C in the presence of hydrochloric or trifluoroacetic acid gives the 2-(1-methyl-1-pyrrolinio-2-yloxy) derivative $[2\text{-B}_{10}\text{H}_9\text{NMP}]^-$ (refs^{139,181,182}) that can be easily hydrolyzed to $[2\text{-B}_{10}\text{H}_9\text{OH}]^{2-}$ (ref.¹⁸²) (Scheme 31).



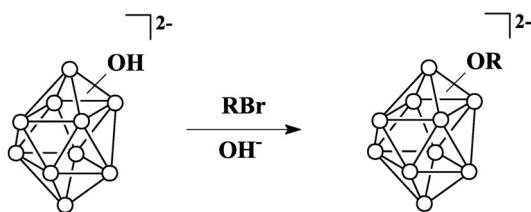
SCHEME 31

The reaction with *N,N*-dimethylformamide proceeds in a similar way^{139,181}. The $[2\text{-B}_{10}\text{H}_9\text{NMP}]^-$ and $[2\text{-B}_{10}\text{H}_9\text{DMF}]^-$ derivatives can be obtained also by the reaction of $[\text{B}_{10}\text{H}_{10}]^{2-}$ with the corresponding amides in the presence of triphenylmethyl chloride¹⁰⁷. A similar method includes the reaction of

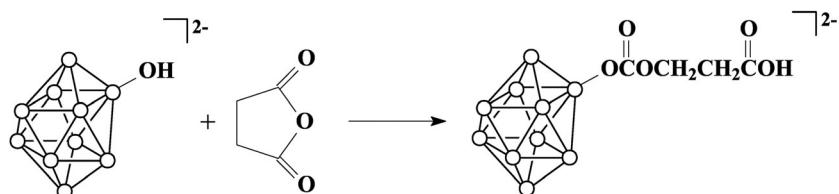
closo-decaborate with tetramethylene sulfone at 85 °C in the presence of *p*-toluenesulfonic acid followed by alkaline hydrolysis of the formed $[2\text{-B}_{10}\text{H}_9\text{OS(O)(CH}_2\text{)}_4]^-$ (ref.¹⁶⁶). These methods allow one to prepare pure $[2\text{-B}_{10}\text{H}_9\text{OH}]^{2-}$ without admixtures of di- and trisubstituted derivatives.

Another approach to the synthesis of the 2-hydroxy derivative includes preparation of the ester derivatives followed by their alkaline hydrolysis. The first such example reported already at the beginning of the 1960s included oxidation of the ketone $[2\text{-B}_{10}\text{H}_9\text{C(O)Ph}]^{2-}$ by hydrogen peroxide to give the respective ester $[2\text{-B}_{10}\text{H}_9\text{OC(O)Ph}]^{2-}$, which upon alkaline hydrolysis gave the equatorially substituted hydroxy derivative^{138,139}. More recently, synthesis of the closo-decaborate esters $[2\text{-B}_{10}\text{H}_9\text{OC(O)R}]^{2-}$ ($\text{R} = \text{H, Me, Et, }i\text{-Pr, }n\text{-Bu}$) by the reaction of the parent anion with the corresponding acids as well as their alkaline hydrolysis were described (Scheme 32)^{183,184}.

SCHEME 32

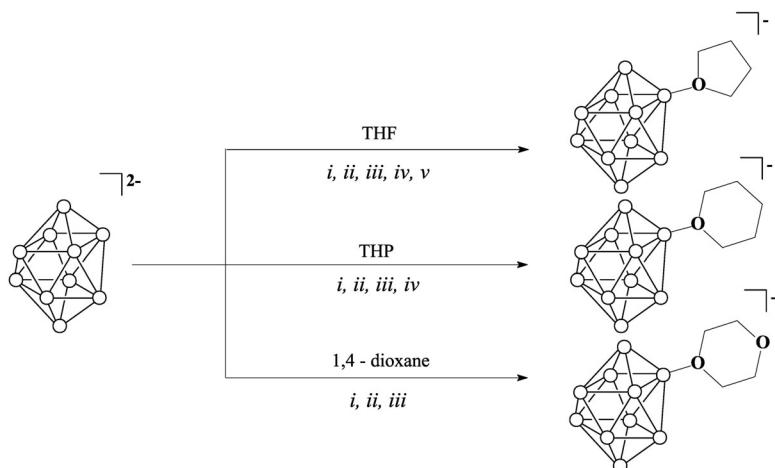

It should be noted that the substitution degree and purity of the goal product are very sensitive to the reaction temperature. At higher temperatures (80–140 °C) mixtures of mono-, di-, tri- and tetrasubstituted derivatives form^{183,184}. More effective synthesis includes the reaction of closo-decaborate with formic or acetic acids in the presence of triphenylmethyl chloride at room temperature resulting in the corresponding ester $[2\text{-B}_{10}\text{H}_9\text{OC(O)R}]^{2-}$ ($\text{R} = \text{H, Me}$)¹⁰⁷.

The 1-hydroxy derivative $[1\text{-B}_{10}\text{H}_9\text{OH}]^{2-}$ was prepared by heating the diazonium derivative $[1\text{-B}_{10}\text{H}_9\text{N}_2]^-$ in aqueous alkaline solution¹⁵⁶.

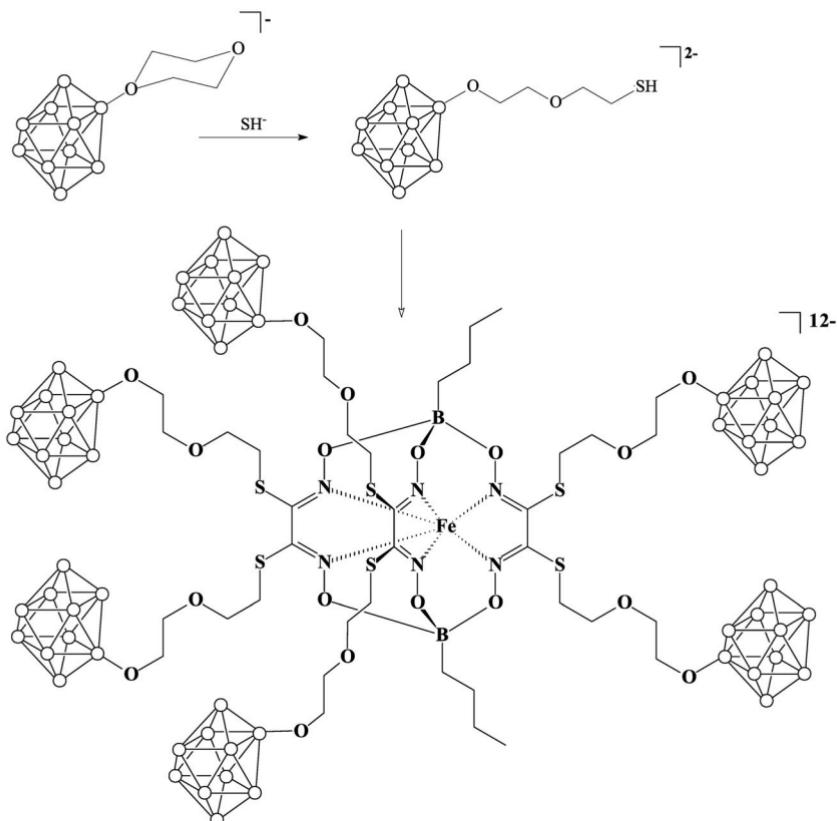

Alkylation of the 1- and 2-hydroxy derivatives with alkyl bromides in dimethylsulfoxide in the presence of potassium hydroxide results in the corresponding alkoxy derivatives $[1\text{-B}_{10}\text{H}_9\text{OR}]^{2-}$ and $[2\text{-B}_{10}\text{H}_9\text{OR}]^{2-}$ (Scheme 33)¹⁸².

Acylation of $[2\text{-B}_{10}\text{H}_9\text{OH}]^{2-}$ with succinic anhydride was reported (Scheme 34)¹⁸⁵.

The cyclic oxonium derivatives $[2\text{-B}_{10}\text{H}_9\text{O}(\text{CH}_2\text{)}_4]^-$, $[2\text{-B}_{10}\text{H}_9\text{O}(\text{CH}_2\text{)}_5]^-$ and $[2\text{-B}_{10}\text{H}_9\text{O}(\text{CH}_2\text{CH}_2\text{)}_2\text{O}]^-$ were prepared by the reaction the parent



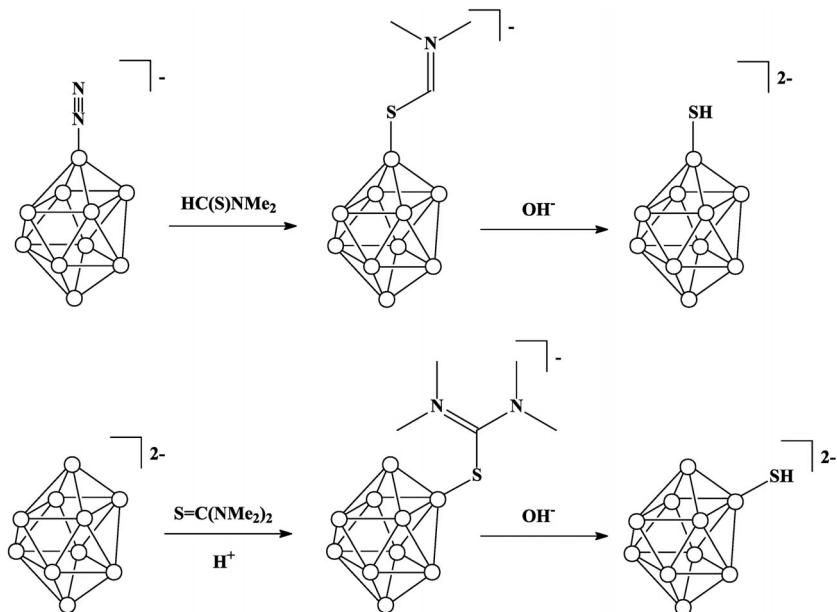
SCHEME 33


SCHEME 34

cis-decaborate with the corresponding cyclic ethers in the presence of trifluoroacetic or hydrochloric acid^{168b,186,187}. The similar results can be obtained using Lewis acids (BF₃·OEt₂¹⁸⁸ or Ph₃CCl¹⁰⁷) (Scheme 35). Synthesis of disubstituted oxonium derivatives [*eq*-B₁₀H₈L₂] (L = O(CH₂)₄, O(CH₂)₅ and O(CH₂CH₂)₂O) was reported¹⁰⁷.

SCHEME 35

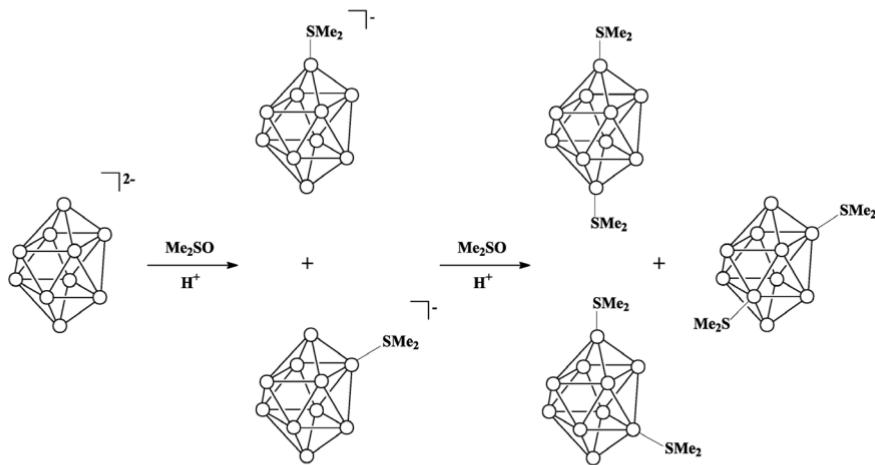
Cyclic oxonium derivatives of polyhedral boron hydrides were shown to have great potential for modification of various types of organic and bio-organic molecules¹⁸⁹. At present, several examples of ring-opening reactions of the cyclic oxonium derivatives of the *clos*-decaborate anion were reported. They include reactions with O-nucleophiles (OH⁻ (refs^{188,190}), OEt⁻ (ref.¹⁹⁰) and functionalized phenolates – derivatives of hydroxy benzoic acids and tyrosine¹⁹¹) and S-nucleophiles (SH⁻, SCN⁻, S₂O₃²⁻)¹⁹². The sulfonyl derivative was used for synthesis of heavily boronated clathrochelates (Scheme 36)¹⁹³.



SCHEME 36

Crystal molecular structures of (Ph₄P)[2-B₁₀H₉NMP]¹⁸¹, (Ph₄P)[2-B₁₀H₉O(CH₂)₄]¹⁸⁸, (Ph₄P)[2-B₁₀H₉O(CH₂)₄]¹⁸⁶, (Ph₃PCH₂Naph)[2-B₁₀H₉O(CH₂CH₂)₂O]¹⁸⁶, [Pb(2,2'-bipy)[2-B₁₀H₉OH](DMF)]·DMF¹⁸³, (Ph₄P){Pb(2,2'-bipy)[2-B₁₀H₉OC(O)Me]₂}¹⁸⁴, {Pb(2,2'-bipy)₂[2,7(8)-B₁₀H₈(OC(O)Me)₂]}¹⁸⁴ and {Pb(2,2'-bipy)[2-B₁₀H₉(OCH₂CH₂)₂-OEt]}·0.5DMF¹⁹⁰ were determined.

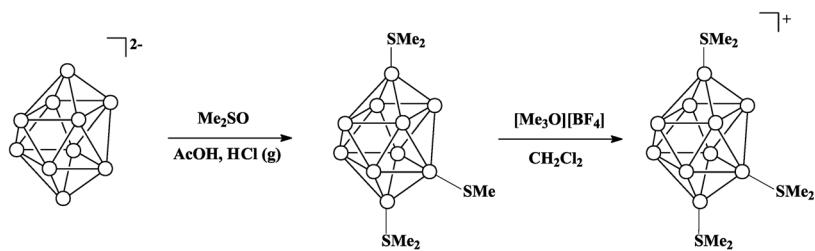
10. DERIVATIVES WITH BORON-SULFUR BOND


The 1-sulfanyl derivative of the *closo*-decaborate anion $[1\text{-B}_{10}\text{H}_9\text{SH}]^{2-}$ was prepared by the reaction of the diazonium derivative $[1\text{-B}_{10}\text{H}_9\text{N}_2]^-$ with *N,N'*-dimethylthioformamide followed by alkaline hydrolysis of the *S*-thioamide intermediate¹⁹⁴. The 2-sulfanyl derivative $[2\text{-B}_{10}\text{H}_9\text{SH}]^{2-}$ was prepared by the reaction of the parent *closo*-decaborate with *N,N,N',N'*-tetramethylthiourea in the presence of acid followed by alkaline hydrolysis of the corresponding *S*-thioamide¹⁹⁴. Crystal molecular structure of $(\text{Me}_3\text{NH})_2[2\text{-B}_{10}\text{H}_9\text{SH}]$ was determined¹⁹⁵. The 1,10-disulfanylperchloro derivative $[1,10\text{-B}_{10}\text{Cl}_8(\text{SH})_2]^{2-}$ was obtained by the reaction of the corresponding diazonium derivative with sulfane (Scheme 37)¹²⁵.

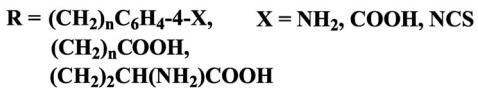
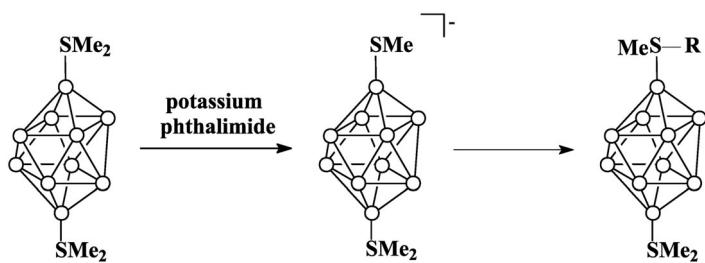
SCHEME 37

The treatment of $[1\text{-B}_{10}\text{H}_9\text{SH}]^{2-}$ and $[2\text{-B}_{10}\text{H}_9\text{SH}]^{2-}$ with trimethylsulfonium iodide gives the corresponding dimethylsulfane derivative $[1\text{-B}_{10}\text{H}_9\text{SMe}_2]^-$ and $[2\text{-B}_{10}\text{H}_9\text{SMe}_2]^-$ (ref.¹⁹⁴). The dimethylsulfane derivatives can be also prepared by the direct reaction of *closo*-decaborate with dimethyl sulfoxide at 50–60 °C under acidic conditions (Scheme 38)^{145,196}.

The substitution proceeds preferentially at apical vertices resulting in $[1\text{-B}_{10}\text{H}_9\text{SMe}_2]^-$ and $[1,10\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$ as the main isomers. Only trace amount of $[2,7(8)\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$ was revealed¹⁹⁶. Heating $[1,10\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$

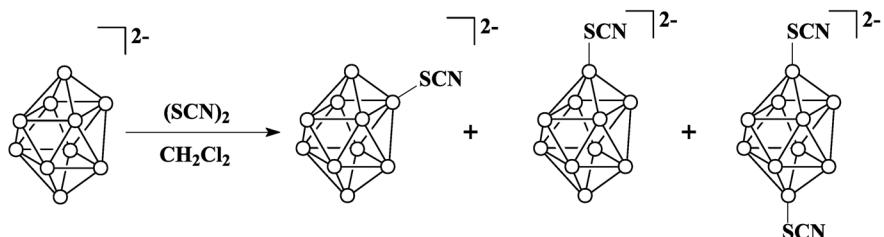

SCHEME 38

$(\text{SMe}_2)_2$] at 220–230 °C for 40 min in Dowtherm (the eutectic mixture of biphenyl and diphenyl ether) results in partial rearrangement to $[2,7(8)\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$. The 2,3-isomer $[2,3\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$ was obtained in a low yield by thermal rearrangement of $[1,6\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$ at 250–260 °C¹⁹⁶. A similar way was used for an introduction of dimethylsulfonium substituent to other derivatives of the *closo*-decaborate anion¹⁴⁵.



Synthesis of the tetramethylenesulfonium derivative $[2\text{-B}_{10}\text{H}_9\text{S}(\text{CH}_2)_4]$ by the reaction of *closo*-decaborate with tetrahydrothiophene in the presence of triphenylmethyl chloride (1-bromoadamantane or *n*-BuBr) was reported¹⁰⁷.

Neutral trisubstituted derivative $[1,10\text{-B}_{10}\text{H}_7(\text{SMe}_2)_2\text{-2-SMe}]$ was prepared by the reaction of *closo*-decaborate with dimethyl sulfoxide at 150 °C^{196,197}. NMR analysis suggests that the reaction proceeds via a cationic intermediate $[1,2,10\text{-B}_{10}\text{H}_7(\text{SMe}_2)_3]^+$. This intermediate cannot be isolated directly, it was however prepared by the treatment of $[1,10\text{-B}_{10}\text{H}_7(\text{SMe}_2)_2\text{-2-SMe}]$ with $[\text{Me}_3\text{O}]^+[\text{BF}_4]^-$ (Scheme 39)¹⁹⁷.

Partial demethylation of the dimethylsulfonium substituent in $[1\text{-B}_{10}\text{H}_9\text{SMe}_2]^-$, $[1,6\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$ and $[1,10\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$ can be achieved by the treatment with potassium phthalimide¹⁴⁵, sodium ethanethiolate¹⁹⁶ or sodium in liquid ammonia¹⁹⁶. The anions formed are readily alkylated to re-form dialkylsulfane derivatives. This approach was used in the synthesis of various functional derivatives including isothiacyanates, amines, acids and aminoacids (Scheme 40)^{198–200}.


SCHEME 39

SCHEME 40

Molecular structures of $\{\text{Pb}(2,2'\text{-bipy})_2[1\text{-B}_{10}\text{H}_8\text{SMe}_2]_2\}$ ²⁰¹, $[1,10\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$ ¹⁹⁶, $[1,6\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$ ¹⁹⁶, $[2,8\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$ ¹⁹⁶, $[2,3\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$ ¹⁹⁶, $(\text{Me}_4\text{N})[1\text{-MeS-10-B}_{10}\text{H}_8\text{SMe}_2]$ ¹⁹⁶, $(\text{Me}_4\text{N})_2[1,6\text{-B}_{10}\text{H}_8(\text{SMe}_2)_2]$ ¹⁹⁶, $[1,10\text{-B}_{10}\text{H}_7(\text{SMe}_2)_2\text{-2-SMe}]$ ¹⁹⁶, $[1,2,10\text{-B}_{10}\text{H}_7(\text{SMe}_2)_3][\text{BF}_4]$ ¹⁹⁷ were determined by single crystal X-ray diffraction.

The reaction of the *closo*-decaborate anion with $(\text{SCN})_2$ in CH_2Cl_2 gives a mixture of thiocyanato derivatives $[1\text{-B}_{10}\text{H}_9\text{SCN}]^{2-}$, $[2\text{-B}_{10}\text{H}_9\text{SCN}]^{2-}$ and $[1,10\text{-B}_{10}\text{H}_8(\text{SCN})_2]^{2-}$ that can be separated by ion-exchange chromatography on diethylaminoethyl cellulose (Scheme 41)²⁰².

SCHEME 41

Crystal molecular structures of $(\text{Ph}_4\text{P})_2[1\text{-B}_{10}\text{H}_9\text{SCN}]$ ^{203a}, $(\text{Ph}_4\text{P})_2[2\text{-B}_{10}\text{H}_9\text{SCN}] \cdot \text{MeCN}$ ^{203b} and $(\text{As}_4\text{P})_2[1,10\text{-B}_{10}\text{H}_8(\text{SCN})_2]$ ^{203a} were determined.

11. DERIVATIVES WITH BORON-SELENIUM BOND

The reaction of the *closo*-decaborate anion with $(\text{SeCN})_2$ in CH_2Cl_2 produces the selenocyanato derivative $[1\text{-B}_{10}\text{H}_9\text{SeCN}]^{2-}$. Structure of $(\text{Ph}_4\text{P})_2[1\text{-B}_{10}\text{H}_9\text{SeCN}]$ was determined by single crystal X-ray diffraction²⁰⁴.

12. DERIVATIVES WITH BORON-METAL BOND

A few examples of derivatives with boron metal were reported. The reactions of the *closo*-decaborate anion with Ph_3SnCl and Ph_2SnCl_2 give $[2\text{-B}_{10}\text{H}_9\text{SnClPh}_2]^{2-}$ (ref.²⁰⁵) and $[2\text{-B}_{10}\text{H}_9\text{SnCl}_2\text{Ph}]^{2-}$ (ref.²⁰⁶), respectively. Structures of $(\text{Ph}_4\text{P})_2[2\text{-B}_{10}\text{H}_9\text{SnClPh}_2]$ and $(\text{Ph}_4\text{P})_2[2\text{-B}_{10}\text{H}_9\text{SnCl}_2\text{Ph}]$ were determined by single crystal X-ray diffraction.

The reaction of $\{\text{Ag}_2[\text{B}_{10}\text{H}_{10}]\}$ with $[(\text{Ph}_3\text{P})\text{AuCl}]$ in an acetonitrile-benzene mixture results in triangular gold complex $\{(\text{Ph}_3\text{P})_3\text{Au}_3[\mu_3\text{-1-B}_{10}\text{H}_9]\}$ with the *closo*-decaborate cluster playing role of μ_3 -bridging ligand. The structure of $\{(\text{Ph}_3\text{P})_3\text{Au}_3[\mu_3\text{-1-B}_{10}\text{H}_9]\} \cdot \text{C}_6\text{H}_6 \cdot \text{SC}_4\text{H}_4$ was determined by single crystal X-ray diffraction (Fig. 6)²⁰⁷.

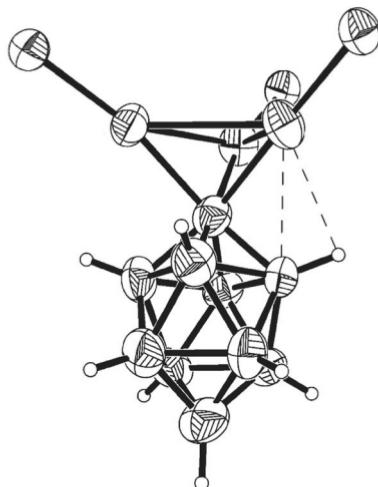
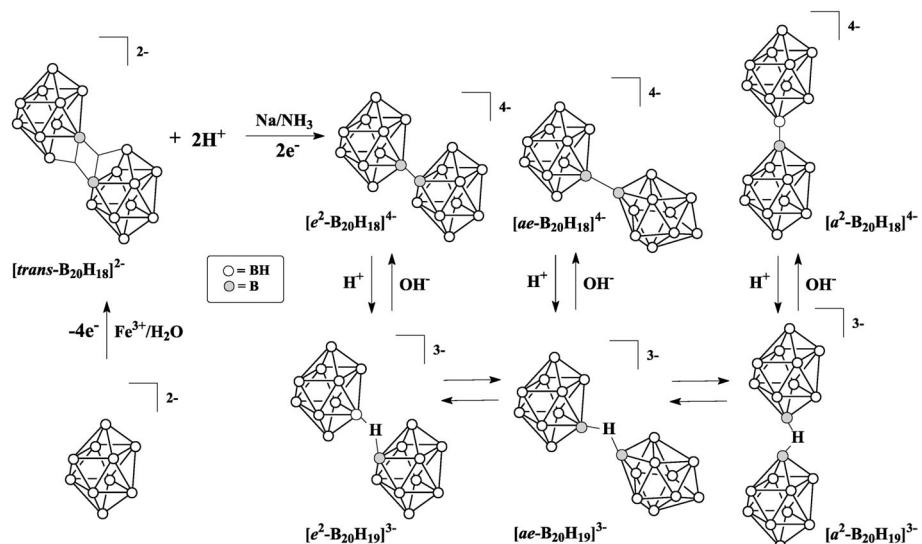
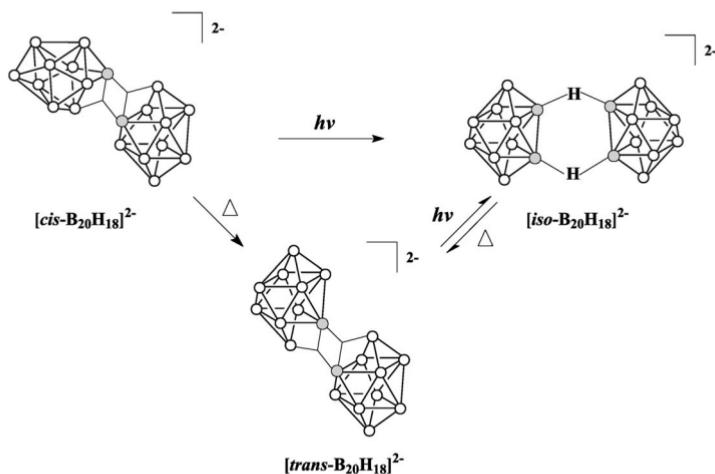



FIG. 6

Molecular structure of $\{(\text{Ph}_3\text{P})_3\text{Au}_3[\mu_3\text{-1-B}_{10}\text{H}_9]\} \cdot \text{C}_6\text{H}_6 \cdot \text{SC}_4\text{H}_4$. The phenyl groups of the triphenylphosphine ligands were omitted for clarity. Reproduced from ref.²⁰⁷ with permission of Springer

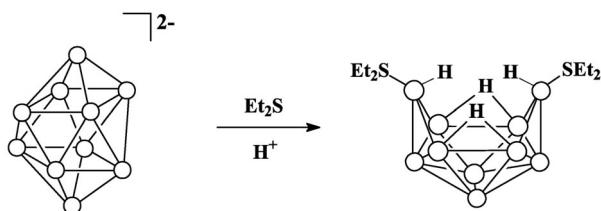
13. OXIDATION: $[B_{20}H_{18}]^{2-}$ AND RELATED SPECIES


The *closo*-decaborate anion was found to be less stable to oxidation than $[B_{12}H_{12}]^{2-}$ and undergoes smooth oxidative conversion to $[trans\text{-}B_{20}H_{18}]^{2-}$ under treatment with Ce^{4+} or Fe^{3+} in aqueous solution (Scheme 42)²⁰⁸⁻²¹⁰. The oxidative coupling of $[B_{10}H_{10}]^{2-}$ to $[trans\text{-}B_{20}H_{18}]^{2-}$ can be achieved in organic solution with 2,3,5,6-tetrachloro-1,4-benzoquinone²¹¹. The same product was obtained by the exhaustive electrolysis of $(Me_3NH)_2[B_{10}H_{10}]$ in acetonitrile at 0.9 V vs SCE²¹². The oxidation of $[closo\text{-}B_{10}H_9L]^-$ derivatives ($L = NMe_3, SMe_2$) proceeds in a similar way resulting in neutral species $[trans\text{-}B_{20}H_{16}L_2]$ ^{211a}.

SCHEME 42

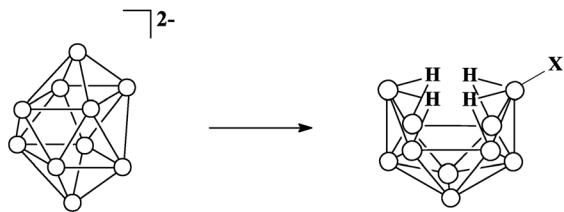
The $[trans\text{-}B_{20}H_{18}]^{2-}$ ion is readily reduced with sodium in liquid ammonia solution to produce the e^2 -isomer of $[B_{20}H_{18}]^{4-}$ (ref.²¹³). In protic solvents, and more rapidly with acid catalysis, the e^2 -isomer rearranges to the ae -isomer and subsequently to the a^2 -isomer. The proton-assisted rearrangement of the isomeric $[B_{20}H_{18}]^{4-}$ ions suggests the existence of a set of isomeric $[B_{20}H_{19}]^{3-}$ ions resulting from the reversible protonation of the corresponding $[B_{20}H_{18}]^{4-}$ isomers. Due to the fluxionality of the bridging proton and rapid isomer equilibration the only $[a^2\text{-}B_{20}H_{19}]^{3-}$ isomer was reliably characterized by the single crystal X-ray diffraction²¹⁴. The reduction of $[B_{20}H_{18}]^{2-}$ to $[B_{20}H_{18}]^{4-}$ is reversible with a variety of oxidizing

agents. The particular isomer of $[B_{20}H_{18}]^{2-}$ resulting from the oxidation depends on the isomer of the $[B_{20}H_{18}]^{4-}$ precursor and the reaction conditions. As an example, all three isomers of $[B_{20}H_{18}]^{4-}$ produce thermodynamically preferred $[trans\text{-}B_{20}H_{18}]^{2-}$ when oxidized with hot aqueous Fe^{3+} , but the $[cis\text{-}B_{20}H_{18}]^{2-}$ isomer can be obtained as a kinetically controlled product when the oxidation of $ae\text{-}[B_{20}H_{18}]^{4-}$ is performed at 0 °C in the presence of a precipitating counterion that removes the product from solution before further rearrangement occurs²¹⁵. The third isomer $[iso\text{-}B_{20}H_{18}]^{2-}$ can be obtained by irradiation of $[trans\text{-}B_{20}H_{18}]^{2-}$ or $[cis\text{-}B_{20}H_{18}]^{2-}$ with ultra-violet light in acetonitrile solution^{215,216}. Heating $[iso\text{-}B_{20}H_{18}]^{2-}$ in acetonitrile regenerates the original of $[trans\text{-}B_{20}H_{18}]^{2-}$ (Scheme 43). More detail discussion of the chemistry of the $[B_{20}H_{18}]^{2-}$ ions including substitution reactions can be found in Hawthorne's review²¹⁷.


SCHEME 43

14. THE B_{10} CAGE OPENING

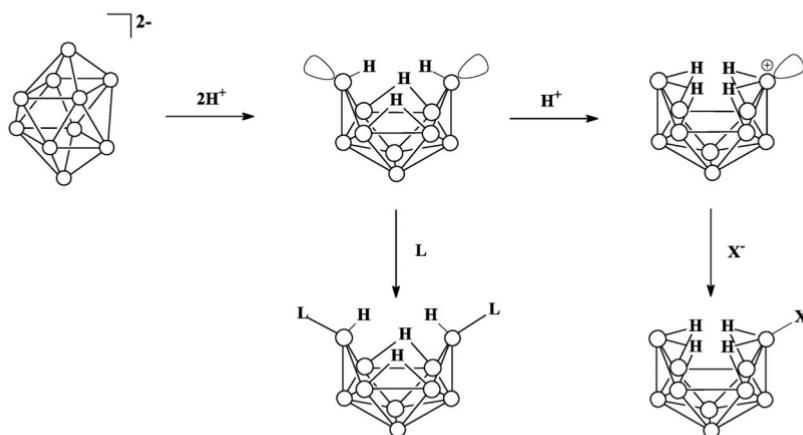
Another example of lower stability of the *closo*-decaborate anion in the comparison with *closo*-dodecaborate is its cage opening. The reaction of $(NH_4)_2[B_{10}H_{10}]$ with anhydrous hydrogen chloride in diethylsulfane was found to result in the cage opening with formation of 6,9-bis(diethylsulfane)decaborane $6,9\text{-}B_{10}H_{12}(SEt_2)_2$ ²¹⁸. Later this reaction was extended to other strong acids and other salts of the *closo*-decaborate anion (Scheme 44)^{14,219}.


The *closo*-decaborate cage-opening studies were stimulated by synthetic utility of decaborane derivatives as potentially important synthons in syn-

thesis of carboranes, polyboranes and organopolyboranes and possibility to prepare them in two step from $(Et_4N)[BH_4]$ avoiding a hazardous diborane pyrolysis reaction.

SCHEME 44

The chloro derivative $6\text{-B}_{10}\text{H}_{13}\text{Cl}$ was prepared by the reaction of $(Et_4N)_2[B_{10}\text{H}_{10}]$ with AlCl_3 in hexane in the presence of very small amount of water²²⁰. The reaction proceeds through the formation of an intermediate complex between $[B_{10}\text{H}_{10}]^{2-}$ and AlCl_3 ²²¹. The reactions with AlBr_3 and AlI_3 give the corresponding halo derivatives²²¹. The reactions of $(\text{NH}_4)_2[B_{10}\text{H}_{10}]$ with HX in a mixture of $[Bmim]\text{X}$ and AlX_3 ($\text{X} = \text{Cl, Br, I}$; $Bmim = 1\text{-butyl-3-methylimidazolium}$) were found to result in the corresponding halo derivatives $6\text{-B}_{10}\text{H}_{13}\text{X}$ in nearly quantitative yields (Scheme 45)²²². The reaction of $(\text{NH}_4)_2[B_{10}\text{H}_{10}]$ with trifluoromethanesulfonic acid in CH_2Cl_2 also gives an excellent yield of the chloro derivative²²². The corresponding fluoro derivative $6\text{-B}_{10}\text{H}_{13}\text{F}$ was prepared by the reaction of $(\text{NH}_4)_2[B_{10}\text{H}_{10}]$ with 1-fluoropentane and trifluoromethanesulfonic acid in pentane²²².


SCHEME 45

The reaction of $\text{Cs}_2[B_{10}\text{H}_{10}]$ with trifluoromethanesulfonic acid in benzene gives the phenyl derivative $6\text{-B}_{10}\text{H}_{13}\text{Ph}$ in a high yield, whereas the similar reaction in cyclohexane produces $6\text{-B}_{10}\text{H}_{13}\text{-cyclo-C}_6\text{H}_{11}$ and $6\text{-B}_{10}\text{H}_{13}\text{OTf}$ ²²³.

The hydroxy derivative $6\text{-B}_{10}\text{H}_{13}\text{OH}$ was found as a by-product in all the cage-opening reactions whenever H_2O may interfere in the formation

process of the product. The preparative synthesis of $6\text{-B}_{10}\text{H}_{13}\text{OH}$ by the reaction of $(\text{NH}_4)_2[\text{B}_{10}\text{H}_{10}]$ with sulfuric acid in hexane was reported as well²²⁴. The hydroxy derivative was found to be the intermediate in the dehydration of the acidic form $(\text{H}_3\text{O})_2[\text{B}_{10}\text{H}_{10}]$ resulting in $6,6'-(\text{B}_{10}\text{H}_{13})_2\text{O}$ ²²⁵.

The mechanism of the cage opening is not yet completely clear. Nevertheless the first step definitely includes double protonation of the boron polyhedron resulting in the cage opening to give $\text{B}_{10}\text{H}_{12}$ being a strong Lewis acid. The subsequent reaction route depends strongly on the presence of nucleophiles in the reaction media. In the presence of classical Lewis bases such as diethylsulfane, the reaction results in *arachno*-6,9- $\text{B}_{10}\text{H}_{12}\text{L}_2$. In the case of weaker nucleophiles, such as halogen anions, the next step probably is protonation of $\text{B}_{10}\text{H}_{12}$ to strongly electrophilic $\text{B}_{10}\text{H}_{13}^+$ followed by nucleophilic attack resulting in *nido*-6- $\text{B}_{10}\text{H}_{13}\text{X}$, and at the last, if no or very weak nucleophiles are present, the C–H activation of a solvent takes place. The probable reaction mechanism is presented in Scheme 46.

SCHEME 46

In summary, the B_{10} cage opening presents a very attractive route to decaborane derivatives and decaborane itself. It was shown that $6\text{-B}_{10}\text{H}_{13}\text{Br}$ can be converted in 70% isolated yield to the parent $\text{B}_{10}\text{H}_{14}$ upon reaction with Bu_3SnH ²²².

The reaction of $(\text{NH}_4)_2[\text{B}_{10}\text{H}_{10}]$ with trifluoromethanesulfonic or sulfuric acid in benzene in the presence of acetonitrile or $(\text{C}_6\text{H}_5)_2\text{CHCN}$ results in $4\text{-B}_9\text{H}_{13}\text{L}$ ($\text{L} = \text{N}\equiv\text{CCH}_3, \text{N}\equiv\text{CCH}(\text{C}_6\text{H}_5)_2$) together with some amounts of $6\text{-B}_{10}\text{H}_{13}\text{Ph}$ and $\text{B}_{10}\text{H}_{14}$ ²²⁶. The degradation of the B_{10} cage could be explained by acidolysis of the *arachno*-6,9- $\text{B}_{10}\text{H}_{12}\text{L}_2$ intermediate.

Another type of reactions that in general is out of scope of this review but should be mentioned here is the B_{10} cage opening with an insertion of metal atom(s) resulting in formation of metallaboranes (so-called “reactions of polyhedral expansion”). The first example of such reactions was reported by Paxson and Hawthorne in 1975 who received isomeric platinaboranes $[(Ph_3P)_2PtB_{10}H_{11}OEt]$ by the reaction of $K_2[B_{10}H_{10}]$ with $[cis-(Ph_3P)_2PtCl_2]$ in hot ethanolic chloroform²²⁷. The mechanism of this reaction is not very clear. Probably, the first step includes coordination of low valent metal (platinum(II)) to the boron cage followed by a 2-electron cage reduction with insertion of the metal to give the Pt(IV) B_{10} species. The reliability of such mechanism is supported by the conversion of $\{cis-((Ph_3P)_2Pt)[B_{10}H_{10}]\}$ into $[(Ph_3P)_2PtB_{10}H_{11}OEt]$ in ethanolic dichloromethane⁶⁵. The reactions of polyhedral expansion of the *closo*-decaborate anion with complexes of platinum^{227,228}, ruthenium^{229,230}, osmium²³¹, rhodium²³², and nickel^{233,234} were reported.

15. POTENTIAL APPLICATIONS OF THE *closo*-DECABORATE ANION

Despite the era of boron chemistry aimed at advanced jet and rocket propulsion systems ended in the early 1960s, the interest in the polyhedral boron hydrides as high energy density materials still persists and some salts of the *closo*-decaborate anion were proposed as components of high burning composite propellants²³⁵. However, the main directions of potential application of the *closo*-decaborate anion lie in other fields, especially in medicine.

The possibility of the application of the *closo*-decaborate anion in medicine is based on its remarkable chemical and hydrolytical stability and low toxicity. The sodium salt $Na_2[B_{10}H_{10}]$ administered orally to rats was found to have a low order of acute toxicity, with the approximate lethal dose for rats higher than 7.5 g/kg of body weight which is roughly comparable to that of sodium chloride²³⁶.

The leading position in application of polyhedral boron hydrides in medicine belongs to boron neutron capture therapy (BNCT) – a binary cancer treatment based upon the interaction of two relatively harmless species, a ^{10}B nucleus and a thermal neutron. Capture of the thermal neutron by the ^{10}B nucleus results in the formation of an excited ^{10}B nucleus which decays to yield highly energetic 4He and 7Li as products. Each of these fission products has an effective range of ca. 10 μm in tissue, thus effectively limiting the extent of cell damage to approximately one cell diameter. Therefore, the selective concentration of the ^{10}B nuclei within tumor cells,

followed by their capture of thermal neutrons, should result in localized destruction of the malignant cells in the presence of the neighboring normal cells²³⁷. It should be noted that the sodium salt of the *closo*-decaborate, $\text{Na}_2[\text{B}_{10}\text{H}_{10}]$ (GB-10), is approved for human use by the US Food and Drug Administration.

Another direction of medical application of the *closo*-decaborate anion is radioimmuno-diagnostics and therapy. Radioactive halogen isotopes play an important role in nuclear medicine. ^{123}I is widely used for gamma-scintigraphy and single-photon emission computerized tomography, and ^{131}I is currently the main radionuclide for radioisotope therapy. There is an increasing interest in application of positron emission tomography in studies of large biomolecules such as monoclonal antibodies, their fragments and shorter peptides, which necessitates the use of positron-emitting halogens like ^{76}Br and ^{124}I . The α -emitting halogen ^{211}At is considered to be one of the most promising therapeutical nuclides in the near future. Polyhedral borane anions were found to be reasonable linkers for the attachment of radiohalogens to tumor-targeting proteins and peptides due to the absence of enzymatic systems for cleavage of the boron–halogen bond, caused by very exogenous nature of such compounds, as well as the negative charges of polyhedral borane anions, which may improve intracellular retention of bound radiohalogens. In comparison with $[\text{B}_{12}\text{H}_{12}]^{2-}$, the $[\text{B}_{10}\text{H}_{10}]^{2-}$ anion has an advantage of much faster iodination reaction, which allows one to use it for selective direct labelling of antibodies in the presence of excess of tyrosine residues. The feasibility of radiolabelling antibodies with the derivatives of the *closo*-dodecaborate anion with different radiohalogen isotopes has been shown recently^{129,130}.

Development of new molecular materials is other promising direction of the use of the *closo*-decaborate anion. The structural and electronic features of this anion, especially strong interactions between the apical boron vertices, provide an attractive alternative to organic aromatics for control the type and degree of electron interactions in molecular materials²³⁸. Thus, the use of *closo*-decaborate derivatives for design of NLO chromophores was reported recently²³⁹. Other directions of potential application of the *closo*-decaborate anion is extraction of radionuclides from nuclear waste²⁴⁰, electrolytes in lithium-ion batteries²⁴¹ and components of ionic liquids²⁴².

The authors thank the Russian Foundation for Basic Research (08-03-00463 and 10-03-91331) for financial support.

16. REFERENCES

1. Hawthorne M. F., Pitochelli A. R.: *J. Am. Chem. Soc.* **1959**, *81*, 5519.
2. a) Grimes R. N.: *Carboranes*. Academic Press, New York 1970; b) Bregadze V. I.: *Chem. Rev.* **1992**, *92*, 209; c) Valliant J. F., Guenther K. J., King A. S., Morel P., Schaffer P., Sogbein O. O., Stephenson K. A.: *Coord. Chem. Rev.* **2002**, *232*, 173.
3. Sivaev I. B., Bregadze V. I., Sjöberg S.: *Collect. Czech. Chem. Commun.* **2002**, *67*, 679.
4. Körbe S., Schreiber P. J., Michl J.: *Chem. Rev.* **2006**, *106*, 5208.
5. Sivaev I. B., Bregadze V. I.: *Collect. Czech. Chem. Commun.* **1999**, *64*, 783.
6. Hawthorne M. F. in: *The Chemistry of Boron and Its Compounds* (E. L. Muetterties, Ed.), p. 223. John Wiley & Sons, New York 1967.
7. Nie Y., Chen H., Miao J., Sun G., Dou J.: *Chin. J. Org. Chem.* **2009**, *29*, 822.
8. Kuznetsov N. T., Ionov S. P., Solntsev K. A.: *Razvitiye kontseptsii aromatichnosti. Poliedricheskie struktury (Development of the Concept of Aromaticity. Polyhedral Structures)*, p. 255. Nauka, Moscow 2009.
9. Hawthorne M. F., Pilling R. L.: *Inorg. Synth.* **1967**, *9*, 16.
10. Muetterties E. L., Balthis J. H., Chia Y. T., Knoth W. H., Miller H. C.: *Inorg. Chem.* **1964**, *3*, 444.
11. a) Volkov V. V., Myakishev K. G.: *8th Int. Meeting on Boron Chemistry IMEBORON VIII, Knoxville 1993*. Book of Abstracts, p. 151; b) Volkov V. V., Myakishev K. G., Sokolov M. N., Fedin V. P., Gushchin A. L., Ilinchik E. A.: *Chem. Substainable Dev.* **2005**, *13*, 155.
12. a) White III J. P., Deng H.-B., Shore S. G.: *J. Am. Chem. Soc.* **1989**, *111*, 8946; b) White III J. P., Shore S. G.: *Inorg. Chem.* **1992**, *31*, 2756.
13. Makhlof J. M., Hough W. V., Hefferan G. T.: *Inorg. Chem.* **1967**, *6*, 1196.
14. Guillevic G., Dazord J., Mongeot H., Cueilleron J.: *J. Chem. Res., Synop.* **1978**, 402.
15. Power D., Spalding T. R.: *Polyhedron* **1985**, *4*, 1329.
16. Colombier M., Atchekzai J., Mongeot H.: *Inorg. Chim. Acta* **1986**, *115*, 11.
17. Mongeot H., Bonnetot B., Atchekzai J., Colombier M., Vigot-Vieillard C.: *Bull. Soc. Chim. Fr.* **1986**, 385.
18. Bonnetot B., Frange B., Mongeot H., El Shamy S., Ouassas A., R'kha C.: *Bull. Soc. Chim. Fr.* **1989**, 632.
19. Klanberg F., Muetterties E. L.: *Inorg. Chem.* **1966**, *5*, 1955.
20. a) Volkov V. V., Posnaya I. S.: *Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk* **1979**, *4*(9), 88; b) Volkov V. V., Posnaya I. S.: *Izv. Akad. Nauk SSSR, Ser. Khim.* **1980**, 400.
21. a) Zhang G.-M., Zhu A.: *Acta Chim. Sin.* **1978**, *36*, 315; b) Zhang G., Zhue H., Qiang, D.: *J. Wuhan Univ. (Nat. Sci. Ed.)* **1981**, *(2)*, 101.
22. Ouassas A., Frange B.: *Bull. Soc. Chim. Fr.* **1984**, 336.
23. Johnson J. W., Brody J. F.: *J. Electrochem. Soc.* **1982**, *129*, 2213.
24. Hofmann K., Albert B.: *Z. Kristallogr.* **2005**, *220*, 142.
25. Hofmann K., Albert B.: *Z. Kristallogr. Suppl.* **2001**, *18*, 88.
26. Itoh H., Tsuzuki Y., Yogo T., Naka S.: *Mater. Res. Bull.* **1987**, *22*, 1259.
27. Malinina E. A., Goeva L. V., Solntsev K. A., Kuznetsov N. T.: *Russ. J. Coord. Chem.* **1992**, *18*, 332.
28. Yisgedu T. B., Chen X., Lingam H. K., Huang Z., Meyers E. A., Shore S. G., Zhao J.-C.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **2010**, *66*, m1.
29. Malinina E. A., Goeva L. V., Solntsev K. A., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **1991**, *36*, 1361.

30. Hofmann K., Albert B.: *Z. Naturforsch., B: Chem. Sci.* **2000**, *55*, 499.

31. Malinina E. A., Goeva L. V., Ivanov S. V., Solntsev K. A., Kuznetsov N. T.: *Russ. J. Coord. Chem.* **1992**, *18*, 329.

32. Zhao D., Shan Z., Song J., Zhang G.: *Chem. J. Chinese Univ.* **1983**, *4*, 93.

33. Shevchenko Yu. N., Yashina N. I., Markova O. Z., Porai-Koshits M. A., Katser S. B.: *Zh. Obshch. Khim.* **1996**, *66*, 1195.

34. Virovets A. V., Vakulenko N. N., Volkov V. V., Podberezskaya N. V.: *J. Struct. Chem.* **1994**, *35*, 339.

35. Orlova A. M., Mustyatsa V. N., Goeva L. V., Katser S. B., Solntsev K. A., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **1996**, *41*, 1856.

36. Gerasimova T. N., Orlova N. A., Shelkovnikov V. V., Ivanova Z. M., Markov R. V., Plekhanov A., Polyanskaya T. M., Volkov V. V.: *Chem. Sustainable Dev.* **2000**, *8*, 109.

37. Malinina E. A., Goeva L. V., Votinova N. A., Solntsev K. A., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **1994**, *39*, 1997.

38. Zhang G., Zhu H., Ding Q.: *Chem. J. Chinese Univ.* **1982**, *3*, 351.

39. Zhang G., Zhu H., Ding Q.: *Chin. J. Appl. Chem.* **1985**, *2*(1), 70.

40. Polyakova I. N., Mustyatsa V. N., Zhizhin K. Yu., Kuznetsov N. T.: *Crystallogr. Rep.* **2004**, *49*, 767.

41. Malinina E. A., Drozdova V. V., Polyakova I. N., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2008**, *53*, 197.

42. Heying T. L., Naar-Colin C.: *Inorg. Chem.* **1964**, *3*, 282.

43. Chitsaz S., Folkepts H., Grebe J., Gröb T., Harms K., Hiller W., Krieger M., Massa W., Merle J., Möhlen M., Numüller B., Dehnicke K.: *Z. Anorg. Allg. Chem.* **2000**, *626*, 775.

44. Malinina E. A., Mustyatsa V. N., Goeva L. V., Fillipova T. V., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2001**, *46*, 1137.

45. Malinina E. A., Mustyatsa V. N., Goeva L. V., Kuznetsov N. T.: *Russ. J. Coord. Chem.* **2001**, *27*, 373.

46. Ilinchik E. A., Drozdova M. K., Yureva O. P., Myakishev K. G., Volkov V. V.: *Russ. J. Inorg. Chem.* **2009**, *54*, 1866.

47. Kraus F., Albert B.: *Z. Anorg. Allg. Chem.* **2005**, *631*, 152.

48. Katser S. B., Malinina E. A., Mustyatsa V. N., Solntsev K. A., Kuznetsov N. T.: *Koord. Khim.* **1992**, *18*, 387.

49. a) Fuller D. J., Kepert D. L., Skelton B. W., White A. H.: *Aust. J. Chem.* **1987**, *40*, 2097; b) Chantler C. T., Maslen E. N.: *Acta Crystallogr., Sect. B: Struct. Sci.* **1989**, *45*, 290.

50. Zhang Y., Cai Z., Chen Z., Pan K., Lu J., Zhang G., Zhu H.: *Chin. J. Struct. Chem.* **1982**, *1*, 45.

51. a) Dobrott R. D., Lipscomb W. N.: *J. Chem. Phys.* **1962**, *37*, 1779; b) Kaczmarczyk A., Dobrott R. D., Lipscomb W. N.: *Proc. Natl. Acad. Sci. U.S.A.* **1962**, *48*, 729.

52. Paxson T. E., Hawthorne M. F., Brown L. D., Lipscomb W. N.: *Inorg. Chem.* **1974**, *13*, 2772.

53. Zhang L., Hu P., Zhang G.: *J. Wuhan Univ. (Nat. Sci. Ed.)* **1989**, *(2)*, 67.

54. Malinina E. A., Goeva L. V., Solntsev K. A., Kuznetsov N. T.: *Zh. Neorg. Khim.* **1993**, *38*, 38.

55. Malinina E. A., Zhizhin K. Yu., Goeva L. V., Polyakova I. N., Kuznetsov N. T.: *Dokl. Chem.* **2001**, *378*, 139.

56. Polyakova, I. N., Malinina E. A., Kuznetsov N. T.: *Crystallogr. Rep.* **2003**, *48*, 84.

57. a) Gill J. T., Lippard S. J.: *Inorg. Chem.* **1975**, *14*, 751; b) Outterson G. G., Brice V. T., Shore S. G.: *Inorg. Chem.* **1976**, *15*, 1456.

58. Drozdova V. V., Malinina E. A., Polyakova I. N., Kuznetsov N. T.: *Dokl. Chem.* **2008**, *418*, 30.

59. a) Malinina E. A., Zhizhin K. Yu., Mustyatsa V. N., Goeva L. V., Polyakova I. N., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2003**, *48*, 811; b) Malinina E., Polyakova I., Zhizhin K., Drozdova V., Goeva L., Kuznetsov N. in: *Boron Chemistry at the Beginning of the 21st Century* (Yu. N. Bubnov, Ed.), p. 136. Editorial URSS, Moscow 2003.

60. Malinina E. A., Zhizhin K. Yu., Polyakova I. N., Lisovskii M. V., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2002**, *47*, 1158.

61. Polyakova I. N., Malinina E. A., Drozdova V. V., Kuznetsov N. T.: *Crystallogr. Rep.* **2008**, *53*, 253.

62. Drozdova V. V., Malinina E. A., Goeva L. V., Polyakova I. N., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2010**, *55*, 34.

63. Tsupreva V. N., Filippov O. A., Titov A. A., Krylova A. I., Sivaev I. B., Bregadze V. I., Pstein L. M., Shubina E. S.: *J. Organomet. Chem.* **2009**, *694*, 1704.

64. Malinina E. A., Solntsev K. A., Butman L. A., Kuznetsov N. T.: *Koord. Khim.* **1989**, *15*, 1039.

65. Gaft Yu. L., Ustynyuk Yu. A., Borisenko A. A., Kuznetsov N. T.: *Zh. Neorg. Khim.* **1983**, *28*, 2234.

66. Shubina E. S., Tikhonova I. A., Bakhmutova E. V., Dolgushin F. M., Antipin M. Yu., Bakhmutov V. I., Sivaev I. B., Teplitskaya L. N., Chizhevsky I. T., Pisareva I. V., Bregadze V. I., Epstein L. M., Shur V. B.: *Chem. Eur. J.* **2001**, *7*, 3783.

67. a) Yang X., Knobler C. B., Hawthorne M. F.: *J. Am. Chem. Soc.* **1993**, *115*, 4904;
b) Yang X., Knobler C. B., Zheng Z., Hawthorne M. F.: *J. Am. Chem. Soc.* **1994**, *116*, 7142.

68. Gaft Yu. L., Kuznetsov N. T., Sukova L. M.: *Russ. J. Inorg. Chem.* **1983**, *28*, 89.

69. Kayumov A. G., Solntsev K. A., Goeva L. V., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **1990**, *35*, 985.

70. Kayumov A. G., Goeva L. V., Solntsev K. A., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **1988**, *33*, 680.

71. Kayumov A. G., Solntsev K. A., Goeva L. V., Kuznetsov N. T., Ellert O. G.: *Russ. J. Inorg. Chem.* **1988**, *33*, 1007.

72. Zhang L., Huang Y., Chen X., He J.: *Chem. J. Chinese Univ.* **1985**, *6*, 872.

73. Zhang L., Chen X., Li E., He J.: *Chin. J. Org. Chem.* **1984**, 446.

74. Gavrilchev K. S., Gorbunov V. E., Malinina E. A., Solntsev K. A., Kuznetsov N. T.: *Russ. J. Coord. Chem.* **1997**, *23*, 771.

75. Kayumov A. G., Solntsev K. A., Goeva L. V., Kuznetsov N. T., Ellert O. G.: *Russ. J. Inorg. Chem.* **1988**, *33*, 1103.

76. Kayumov A. G., Yakushev A. B., Solntsev K. A., Goeva L. V., Kuznetsov N. T., Ellert O. G.: *Russ. J. Inorg. Chem.* **1988**, *33*, 1482.

77. Zhang L., Hu P., Zhang G.: *Chin. J. Org. Chem.* **1983**, 277.

78. Bushuev M. B., Lavrenova L. G., Shvedenkov Yu. G., Varnek V. A., Sheludyakova L. A., Volkov V. V., Larionov S. V.: *Russ. J. Coord. Chem.* **2008**, *34*, 190.

79. Shevchenko Yu. N., Logvinenko V. A., Yashchina N. I., Pisarev E. A., Gavrilova G. V.: *J. Therm. Anal.* **1985**, *30*, 365.

80. Orlova A. M., Goeva L. V., Lagun V. L., Solntsev K. A., Kuznetsov N. T.: *Zh. Neorg. Khim.* **1996**, 41, 393.

81. Malinina E. A., Drozdova V. V., Goeva L. V., Polyakova I. N., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2007**, 52, 854.

82. Zhang L., Ding Z., Zhang G.: *J. Wuhan Univ. (Nat. Sci. Ed.)* **1987**, (4), 75.

83. Zhang L., Ding Z., Zhang G.: *Chem. J. Chinese Univ.* **1986**, 7, 877.

84. Hu P., Zhang L., Liu X., Tan Z., Zhang G.: *Chem. J. Chin. Univ.* **1988**, 9, 954.

85. Zhang G., Xiong H., Zhang L.: *Chin. J. Appl. Chem.* **1984**, 1(5), 40.

86. Hu P., Zhang L.: *J. Chin. Rare Earth Soc.* **1990**, 301.

87.a) Kuznetsov N. T., Zemskova L. A., Goeva L. V.: *Koord. Khim.* **1981**, 7, 232; b) Kuznetsov N. T., Zemskova L. A., Alikhanova Z. M., Ippolitov E. G.: *Russ. J. Inorg. Chem.* **1981**, 26, 15; c) Kuznetsov N. T., Zemskova L. A., Ippolitov E. G.: *Russ. J. Inorg. Chem.* **1981**, 26, 1003; d) Mikhailov Yu. N., Kanishcheva A. S., Zemskova L. A., Mistryukov V. E., Kuznetsov N. T., Solntsev K. A.: *Zh. Neorg. Khim.* **1982**, 27, 2343.

88. Wen W.-Y., Chen C. L.: *J. Chem. Eng. Data* **1975**, 20, 384.

89. Sivaev I. B., Petrovskii P. V., Filin A. M., Shubina E. S., Bregadze V. I.: *Russ. Chem. Bull.* **2001**, 50, 1115.

90. Shubina E. S., Bakhmutova E. V., Filin A. M., Sivaev I. B., Teplitskaya L. N., Chistyakov A. L., Stankevich I. V., Bakhmutov V. I., Bregadze V. I., Epstein L. M.: *J. Organomet. Chem.* **2002**, 657, 155.

91. Sivaev I. B., Bragin V. I., Prikaznov A. V., Petrovskii P. V., Bregadze V. I., Filippov O. A., Teplinskaya T. A., Titov A. A., Shubina E. S.: *Collect. Czech. Chem. Commun.* **2007**, 72, 1725.

92. Wegner P. A., Adams D. M., Callabretta F. J., Spada L. T., Unger R. G.: *J. Am. Chem. Soc.* **1973**, 95, 7513.

93. Shore S. G., Hamilton E. J. M., Bridges A. N., Bausch J., Krause-Bauer J. A., Dou D., Liu J., Liu S., Du B., Hall H., Meyers E. A., Vermillion K. E.: *Inorg. Chem.* **2003**, 42, 1175.

94.a) Mustyatsa V. N., Votinova N. A., Solntsev K. A., Kuznetsov N. T.: *Dokl. Chem.* **1988**, 301, 245; b) Mustyatsa V. N., Solntsev K. A., Sakharov, S. G., Kuznetsov N. T.: *Dokl. Chem.* **1998**, 358, 1.

95.a) Mustyatsa V. N., Votinova N. A., Goeva L. V., Zhizhin K. Yu., Malinina E. A., Kuznetsov N. T.: *Russ. J. Coord. Chem.* **2001**, 27, 622; b) Ochertyanova L. I., Mustyatsa V. N., Zhizhin K. Yu., Belousova O. N., Kuznetsov N. T.: *Inorg. Mater.* **2004**, 40, 144.

96.a) Mebel A. M., Charkin O. P., Solntsev K. A., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **1988**, 33, 1292; b) Mebel A. M., Charkin O. P., Bühl M., Schleyer P. v. R.: *Inorg. Chem.* **1993**, 32, 463.

97.a) Ponomarev V. I., Solntsev K. A., Mustyatsa V. N., Kuznetsov N. T.: *Koord. Khim.* **1991**, 17, 640; b) Ponomarev V. I., Solntsev K. A., Mustyatsa V. N., Kuznetsov N. T.: *Russ. J. Coord. Chem.* **1992**, 18, 324.

98. Volkov V. V., Myakishev K. G.: *Dokl. Akad. Nauk SSSR* **1978**, 240, 342.

99. Ivanov S. V., Ivanova S. M., Miller S. M., Anderson O. P., Solntsev K. A., Strauss S. H.: *Inorg. Chem.* **1996**, 35, 6914.

100. Ivanov S. V., Ivanova S. M., Miller S. M., Anderson O. P., Kuznetsov N. T., Solntsev K. A., Strauss S. H.: *Collect. Czech. Chem. Commun.* **1997**, 62, 1310.

101. Štíbr B., Plešek J., Heřmánek S.: *Collect. Czech. Chem. Commun.* **1969**, 34, 194.

102. Knoth W. H., Miller H. C., Sauer J. C., Balthis J. H., Chia Y. T., Mietterties E. L.: *Inorg. Chem.* **1964**, 3, 159.

103.a) Böhrens K.-G., Preetz W.: *Angew. Chem., Int. Ed. Engl.* **1977**, *16*, 173; b) Böhrens K.-G., Preetz W.: *J. Chromatogr.* **1977**, *139*, 291.

104. Preetz W., Srebny H.-G., Marsmann H. C.: *Z. Naturforsch., B: Chem. Sci.* **1984**, *39*, 6.

105. Einholz W., Vaas K., Wieloch C., Speiser B., Wizemann T., Ströbele M., Meyer H.-J.: *Z. Anorg. Allg. Chem.* **2002**, *628*, 258.

106. Drozdova V. V., Zhizhin K. Yu., Malinina E. A., Polyakova I. N., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2007**, *52*, 996.

107. Retivov V. M., Matveev E. Yu., Lisovskii M. V., Razgonyaeva G. A., Ochertyanova L. I., Zhizhin K. Yu., Kuznetsov N. T.: *Russ. Chem. Bull.* **2010**, *59*, 550.

108. Curtis Z. B., Young C., Dickerson R., Lai K. K., Kaczmarczyk A.: *Inorg. Chem.* **1974**, *13*, 1760.

109. Zhang L., Hu P., Xiang J., Zhang G.: *J. Wuhan Univ. (Nat. Sci. Ed.)* **1985**, *(2)*, 59.

110. Gaft Yu. L., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **1981**, *26*, 699.

111. Gaft Yu. L., Zakharova I. A., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **1980**, *25*, 726.

112. Orlova A. M., Goeva L. V., Solntsev K. A., Kuznetsov N. T.: *Zh. Neorg. Khim.* **1996**, *41*, 796.

113. Kuznetsov N. T., Zemskova L. A.: *Zh. Neorg. Khim.* **1982**, *27*, 1320.

114. Preetz W., Nachtigal C.: *Z. Anorg. Allg. Chem.* **1995**, *621*, 1632.

115. Scarbrough F. E., Lipscomb W. N.: *Inorg. Chem.* **1972**, *11*, 369.

116. Bowden W.: *J. Electrochem. Soc.* **1982**, *129*, 1249.

117. Rupich M. W., Foos J. S., Brummer S. B.: *J. Electrochem. Soc.* **1985**, *132*, 119.

118.a) Zakharova I. A., Gaft Yu. L., Kuznetsov N. T., Salyn Ya. V., Leites L. A., Kurbakova A. P., Kagansky M. M.: *Inorg. Chim. Acta* **1981**, *47*, 181; b) Kukina G. A., Sergienko V. S., Gaft Yu. L., Zakharova I. A., Porai-Koshits M. A.: *Inorg. Chim. Acta* **1980**, *45*, L257.

119. Böhrens K.-G., Preetz W.: *Angew. Chem., Int. Ed. Engl.* **1977**, *16*, 398.

120. Zakharkin L. I., Guseva V. V., Petrovskii P. V.: *Zh. Obshch. Khim.* **2001**, *71*, 1082.

121.a) Schmitt A. P., Middaugh R. L.: *Inorg. Chem.* **1974**, *13*, 163; b) Middaugh R. L.: *Inorg. Chem.* **1974**, *13*, 744.

122. Nachtigal C., Preetz W.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1996**, *52*, 453.

123. Shelly K., Knobler C. B., Hawthorne M. F.: *Inorg. Chem.* **1992**, *31*, 2889.

124. Hertler W. R., Knoth W. H., Muetterties E. L.: *Inorg. Chem.* **1965**, *4*, 288.

125.a) Knoth W. H., Sauer J. C., Miller H. C., Muetterties E. L.: *J. Am. Chem. Soc.* **1964**, *86*, 115; b) Knoth W. H.: *J. Am. Chem. Soc.* **1966**, *88*, 935.

126. Knoth W. R.: *Organometallics* **1985**, *4*, 207.

127. Knoth W. R., Sauer J. C., Balthis J. H., Miller H. C., Muetterties E. L.: *J. Am. Chem. Soc.* **1967**, *89*, 4842.

128. Lisovskii M. V., Plyavnik N. V., Serebrennikova G. A., Zhizhin K. Yu., Malinina E. A., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2005**, *50*, 20.

129.a) Wilbur D. S., Hamlin D. K., Chyan M.-K., Vessella R. L., Wedge T. J., Hawthorne M. F.: *Bioconjugate Chem.* **2007**, *18*, 1226; b) Wilbur D. S., Hamlin D. K., Chyan M.-K., Brechbiel M. W.: *Bioconjugate Chem.* **2008**, *19*, 158; c) Wilbur D. S., Thakar M. S., Hamlin D. K., Santos E. B., Chyan M.-K., Nakamae H., Pagel J. M., Press O. W., Sandmaier B. M.: *Bioconjugate Chem.* **2009**, *20*, 1983.

130. Wilbur D. S., Chyan M.-K., Hamlin D. K., Perry M. A.: *Nucl. Med. Biol.* **2010**, *37*, 167.

131. Haslinger F., Soloway A. H., Butler D. N.: *J. Med. Chem.* **1966**, *9*, 581.

132. Alam F., Soloway A. H., Barth R. F., Mafune N., Adams D. M., Knoth W. H.: *J. Med. Chem.* **1989**, *32*, 2326.

133. Hertler W. R.: *J. Am. Chem. Soc.* **1964**, *86*, 2949.

134. Knoth W. H., Miller N. E., Hertler W. R.: *Inorg. Chem.* **1967**, *6*, 1977.

135. Hertler W. R., Knoth W. H., Muetterties E. L.: *J. Am. Chem. Soc.* **1964**, *86*, 5434.

136. Trofimenko S.: *J. Am. Chem. Soc.* **1966**, *88*, 1899.

137. Knoth W. H.: *J. Am. Chem. Soc.* **1967**, *89*, 4850.

138. Knoth W. H., Miller H. C., England D. C., Parshall G. W., Muetterties E. L.: *J. Am. Chem. Soc.* **1962**, *84*, 1056.

139. Knoth W. H., Sauer J. C., England D. C., Hertler W. R., Muetterties E. L.: *J. Am. Chem. Soc.* **1964**, *86*, 3973.

140.a) Harmon K. M., Harmon A. B., MacDonald A. A.: *J. Am. Chem. Soc.* **1964**, *86*, 5036; b) Harmon K. M., Harmon A. B.: *J. Am. Chem. Soc.* **1966**, *88*, 4093; c) Harmon K. M., Harmon A. B., MacDonald A. A.: *J. Am. Chem. Soc.* **1969**, *91*, 323; d) Harmon K. M., Nelson T. E., Stachowski B. M.: *J. Mol. Struct.* **1995**, *350*, 135.

141. Harmon K. M., Gill S. H.: *J. Mol. Struct.* **2002**, *607*, 181.

142. Tolpin E. I., Mizusawa E., Becker D. S., Venzel J.: *Inorg. Chem.* **1980**, *19*, 1182.

143. John K. C., Kaczmarczyk A., Soloway A. H.: *J. Med. Chem.* **1969**, *12*, 54.

144. Nachtigal C., Preetz W.: *Z. Naturforsch., B: Chem. Sci.* **1996**, *51*, 1559.

145. Knoth W. H., Hertler W. R., Muetterties E. L.: *Inorg. Chem.* **1965**, *4*, 280.

146. Whelan T., Brint P., Spalding T. R., McDonald W. S., Lloyd D. R.: *J. Chem. Soc., Dalton Trans.* **1982**, 2469.

147.a) Hawthorne M. F., Olsen F. P.: *J. Am. Chem. Soc.* **1964**, *86*, 4219; b) Hawthorne M. F., Olsen F. P.: *J. Am. Chem. Soc.* **1965**, *87*, 2366.

148. Siedle A. R., Bodner G. M.: *Inorg. Chem.* **1973**, *12*, 2091.

149. Wong H. S., Tolpin E. I., Lipscomb W. N.: *J. Med. Chem.* **1974**, *17*, 785.

150. Zakharkin L. I., Pisareva I. V., Sulaimankulova D. D., Antonovich V. A.: *Zh. Obshch. Khim.* **1990**, *60*, 2737.

151. Zakharkin L. I., Sulaimankulova D. D., Pisareva I. V.: *Organomet. Chem. USSR* **1990**, *3*, 466.

152.a) Leyden R. N., Hawthorne M. F.: *J. Am. Chem. Soc.* **1973**, *95*, 2032; b) Leyden R. N., Hawthorne M. F.: *Inorg. Chem.* **1975**, *14*, 2444.

153. Ng L.-L., Ng B. K., Shelly K., Knobler C. B., Hawthorne F. M.: *Inorg. Chem.* **1991**, *30*, 4278.

154. Naoufal D., Bonnetot B., Mongeot H.: *Appl. Organometal. Chem.* **2003**, *17*, 244.

155. Naoufal D., Grüner B., Bonnetot B., Mongeot H.: *Polyhedron* **1999**, *18*, 931.

156. Bragin V. I., Sivaev I. B., Bregadze V. I., Votinova N. A.: *J. Organomet. Chem.* **2005**, *690*, 2847.

157. Knoth W. H.: *J. Am. Chem. Soc.* **1972**, *94*, 104.

158. Schramm K. D., Ibers J. A.: *Inorg. Chem.* **1977**, *16*, 3287.

159. Hertler W. R., Raasch M. S.: *J. Am. Chem. Soc.* **1964**, *86*, 3661.

160. Sivaev I. B., Votinova N. A., Bragin V. I., Starikova Z. A., Goeva L. V., Bregadze V. I., Sjöberg S.: *J. Organomet. Chem.* **2002**, *657*, 163.

161. Nachtigal C., Haeckel O., Preetz W.: *Z. Anorg. Allg. Chem.* **1997**, *623*, 1385.

162. Hertler W. R.: *Inorg. Chem.* **1964**, *3*, 1195.

163. Drozdova V. V., Lisovskii M. V., Polyakova I. N., Zhizhin K. Yu., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2006**, *51*, 1552.

164. Nakagawa T., Aono K.: *Chem. Pharm. Bull.* **1976**, *24*, 778.

165. Sivaev I. B., Bragin V. I., Bregadze V. I., Votinova N. A., Sjöberg S.: *Russ. Chem. Bull.* **2004**, 53, 2092.

166. Miller H. C., Hertler W. R., Muetterties E. L., Knoth W. H., Miller N. E.: *Inorg. Chem.* **1965**, 4, 1216.

167. Dou D., Mavunkal I. J., Krause Bauer J. A., Knobler C. B., Hawthorne M. F., Shore S. G.: *Inorg. Chem.* **1994**, 33, 6432.

168. a) Zhizhin K. Yu., Mustyatsa V. N., Matveev E. Yu., Drozdova V. V., Votinova N. A., Polyakova I. N., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2003**, 48, 671; b) Zhizhin K., Mustyatsa V., Votinova N., Polyakova I., Matveev E., Kuznetsov N. in: *Boron Chemistry at the Beginning of the 21st Century* (Yu. N. Bubnov, Ed.), p. 151. Editorial URSS, Moscow 2003.

169. Zhdanov A. P., Lisovsky M. V., Goeva L. V., Razgonyaeva G. A., Polyakova I. N., Zhizhin K. Yu., Kuznetsov N. T.: *Russ. Chem. Bull.* **2009**, 58, 1694.

170. a) Hu P., Zhang L., Liu Y., Zhang G.: *Chin. J. Inorg. Chem.* **1990**, 6, 130; b) Siriwardane U., Chu S. S. C., Hosmane N. S., Zhang G., Zhu W., Zhu H.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1989**, 45, 294.

171. Polyakova I. N., Zhizhin K. Yu., Kuznetsov N. T.: *Crystallogr. Rep.* **2007**, 52, 271.

172. Norman A. H., Kaczmarczyk A.: *Inorg. Chem.* **1974**, 13, 2316.

173. Mongeot H., Atchekzai J.: *Bull. Soc. Chim. Fr.* **1983**, 70.

174. Wiesboeck R. A.: *J. Am. Chem. Soc.* **1963**, 85, 2725.

175. a) Nachtigal C., Preetz W.: *Z. Anorg. Allg. Chem.* **1996**, 622, 2057; b) Nachtigal C., Preetz W.: *Z. Anorg. Allg. Chem.* **1997**, 623, 683; c) Nachtigal C., Preetz W.: *Z. Anorg. Allg. Chem.* **1998**, 624, 327.

176. a) Schwalbe C. H., Lipscomb W. N.: *J. Am. Chem. Soc.* **1969**, 91, 194; b) Schwalbe C. H., Lipscomb W. N.: *Inorg. Chem.* **1971**, 10, 160.

177. Nachtigal C., Preetz W.: *Z. Anorg. Allg. Chem.* **1997**, 623, 1489.

178. Jasper S. A., Jones R. B., Mattern J., Huffman J. C., Todd L. J.: *Inorg. Chem.* **1994**, 33, 5620.

179. a) Yao H.-J., Hu C.-H., Dou J.-M., Sun J., Wei J.-D., Huang, Z.-E., Jin R. S., Zheng P.-J.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1998**, 54, IUC9800008; b) Yao H.-J., Hu C.-H., Dou J.-M., Sun J., Jin R. S., Zheng P.-J.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1999**, 55, IUC9900033.

180. Naoufal D., Bonnetot B., Mongeot H., Grüner B.: *Collect. Czech. Chem. Commun.* **1999**, 64, 856.

181. Zhizhin K. Yu., Mustyatsa V. N., Malinina E. A., Polyakova I. N., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2005**, 50, 29.

182. Prikaznov A. V., Bragin V. I., Davydova M. N., Sivaev I. B., Bregadze V. I.: *Collect. Czech. Chem. Commun.* **2007**, 72, 1689.

183. Zhizhin K. Yu., Vovk O. O., Malinina E. A., Mustyatsa V. N., Goeva L. V., Polyakova I. N., Kuznetsov N. T.: *Russ. J. Coord. Chem.* **2001**, 27, 613.

184. a) Zhizhin K. Yu., Malinina E. A., Polyakova I. N., Lisovskii M. V., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2002**, 47, 1158; b) Zhizhin K., Mustyatsa V., Polyakova I., Lisovskii M., Kuznetsov N. in: *Boron Chemistry at the Beginning of the 21st Century* (Yu. N. Bubnov, Ed.), p. 146. Editorial URSS, Moscow 2003.

185. Lu Y.-X., Ding H.-X., Lu H.-M.: *Acta Chim. Sin.* **1990**, 48, 820.

186. Zhizhin K. Yu., Mustyatsa V. N., Malinina E. A., Votinova N. A., Matveev E. Yu., Goeva L. V., Polyakova I. N., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2004**, 49, 180.

187. Akimov S. S., Matveev E. Yu., Razgonyaeva G. A., Ochertyanova L. I., Votinova N. A., Zhizhin K. Yu., Kuznetsov N. T.: *Russ. Chem. Bull.* **2010**, 59, 371.

188. Bernard R., Cornu D., Perrin M., Scharff J.-P., Miele P.: *J. Organomet. Chem.* **2004**, 689, 2581.

189.a) Semioshkin A. A., Sivaev I. B., Bregadze V. I.: *Dalton Trans.* **2008**, 977; b) Sivaev I. B., Semioshkin A. A., Bregadze V. I.: *Appl. Radiat. Isot.* **2009**, 67, S91.

190. Zhizhin K. Yu., Mustyatsa V. N., Malinina E. A., Matveev E. Yu., Goeva L. V., Polyakova I. N., Kuznetsov N. T.: *Russ. J. Inorg. Chem.* **2005**, 50, 203.

191. Prikaznov A. V., Sivaev I. B., Bregadze V. I., Kisim A. V.: Presented at *Young Researchers BNCT Meeting, Mainz, 2009*.

192. Matveev E. Yu., Razgonyaeva G. A., Mustyatsa V. N., Votinova N. A., Zhizhin K. Yu., Kuznetsov N. T.: *Russ. Chem. Bull.* **2010**, 59, 556.

193.a) Voloshin Ya. Z., Varzatskii O. A., Zhizhin K. Yu., Kuznetsov N. T.: Presented at *XXIII Chugaev Int. Conf. Coord. Chem., Odessa (Ukraine), 2007*; b) Voloshin Ya. Z., Varsatskii O. A., Bubnov Yu. N.: *Russ. Chem. Bull.* **2007**, 56, 577.

194. Komura M., Nakai H., Shiro M.: *J. Chem. Soc., Dalton Trans.* **1987**, 1953.

195. Nakai H., Komura M., Shiro M.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1987**, 43, 1420.

196. Hall H. D., Ulrich B. D., Kultyshev R. G., Liu J., Liu S., Meyers E. A., Greau S., Shore S. G.: *Collect. Czech. Chem. Commun.* **2002**, 67, 1007.

197. Shore S. G., Hamilton E. J. M., Kultyshev R. G., Leung H. T., Yisgedu T.: *Pure Appl. Chem.* **2006**, 78, 1341.

198. Sneath R. L., Soloway A. H., Dey A. S.: *J. Med. Chem.* **1974**, 17, 796.

199. Sneath R. L., Wright J. E., Soloway A. H., O'Keefe S. M., Dey A. S., Smolnycki W. D.: *J. Med. Chem.* **1976**, 19, 1290.

200. Jacobs P. M., Sneath R. L., Soloway A. H., Dey A. S.: *J. Pharm. Sci.* **1976**, 65, 604.

201. Orlova A. M., Sivaev I. B., Lagun V. L., Katser S. B., Solntsev K. A., Kuznetsov N. T.: *Russ. J. Coord. Chem.* **1993**, 19, 116.

202. Srebny H.-G., Preetz W.: *Z. Anorg. Allg. Chem.* **1984**, 513, 7.

203.a) Nachtigal C., Preetz W.: *Z. Anorg. Allg. Chem.* **1997**, 623, 347; b) Nachtigal C., Preetz W.: *Z. Anorg. Allg. Chem.* **1996**, 622, 509.

204. Nachtigal C., Steuer B., Preetz W.: *Chem. Ber.* **1996**, 129, 1531.

205. Nachtigal C., Preetz W.: *Z. Naturforsch., B: Chem. Sci.* **1996**, 51, 1061.

206. Nachtigal C., Preetz W.: *Z. Naturforsch., B: Chem. Sci.* **1997**, 52, 975.

207. Malinina E. A., Drozdova V. V., Bykov A. Yu., Belousova O. N., Polyakova I. N., Zhizhin K. Yu., Kuznetsov N. T.: *Dokl. Chem.* **2007**, 414, 137.

208. Kaczmarczyk A., Dobrott R. D., Lipscomb W. N.: *Proc. Natl. Acad. Sci. U.S.A.* **1962**, 48, 729.

209. Chamberland B. L., Muetterties E. L.: *Inorg. Chem.* **1964**, 3, 1450.

210. Hawthorne M. F., Pilling R. L., Stokely P. F., Garrett P. M.: *J. Am. Chem. Soc.* **1963**, 85, 3704.

211. Watson-Clark R. A., Hawthorne M. F.: *Inorg. Chem.* **1997**, 36, 5419.

212. Middaugh R. L., Farha F.: *J. Am. Chem. Soc.* **1966**, 88, 4147.

213. Hawthorne M. F., Pilling R. L., Stokely P. F.: *J. Am. Chem. Soc.* **1965**, 87, 1893.

214. Watson-Clark R. A., Knobler C. B., Hawthorne M. F.: *J. Am. Chem. Soc.* **1966**, 35, 2963.

215. Li F., Shelly K., Knobler C. B., Hawthorne M. F.: *Angew. Chem., Int. Ed. Engl.* **1998**, 37, 1865.

216. Hawthorne M. F., Pilling R. L.: *J. Am. Chem. Soc.* **1966**, *88*, 3873.

217. Hawthorne M. F., Shelly K., Li F.: *Chem. Commun.* **2002**, 547.

218. Marshall M. D., Hunt R. M., Hefferan G. T., Adams R. M., Makhlof J. M.: *J. Am. Chem. Soc.* **1967**, *89*, 3361.

219. Wang G., Lu Y., Huang X., Dai L.: *Acta Chim. Sin.* **1981**, *39*, 251.

220. Mongeot H., Atchekzai J., Bonnetot B., Colombier M.: *Bull. Soc. Chim. Fr.* **1987**, 75.

221. Bonnetot B., Miele P., Naoufal D., Mongeot H.: *Collect. Czech. Chem. Commun.* **1997**, *62*, 1273.

222. Ewing W. C., Carroll P. J., Sneddon L. G.: *Inorg. Chem.* **2008**, *47*, 8580.

223. Hawthorne M. F., Mavunkal I. J., Knobler C. B.: *J. Am. Chem. Soc.* **1992**, *114*, 4427.

224. Naoufal D., Kodeih M., Cornu D., Miele P.: *J. Organomet. Chem.* **2005**, *690*, 2787.

225. Bonnetot B., Tangi A., Colombier M., Mongeot H.: *Inorg. Chim. Acta* **1985**, *105*, L15.

226. Naoufal D., Grüner B., Bonnetot B., Mongeot H.: *Main Group Met. Chem.* **1999**, *22*, 127.

227. Paxson T. E., Hawthorne M. F.: *Inorg. Chem.* **1975**, *14*, 1604.

228. a) Hu C.-H., Dou J.-M., Yao H.-J., Wei J.-D., Jin R.-S., Sun J., Zheng P.-J.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1998**, *54*, 1835; b) Nie Y., Hu C.-H., Li X., Yong W., Dou J.-M., Sun J., Jin R.-S., Zheng P.-J.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **2001**, *57*, 897; c) Yong W., Hu C.-H., Dou J.-M., Sun J., Hu K.-J., Jin R. S., Zheng P.-J.: *Chin. J. Chem.* **2001**, *19*, 1162; d) Hu C. H., Yong W., Dou J.-M., Sun J., Hu K.-J., Jin R.-S., Zheng P.-J.: *Chin. J. Chem.* **2002**, *20*, 536; e) Dou J., Wu L., Guo Q., Li D., Wang D.: *Eur. J. Inorg. Chem.* **2005**, *63*; f) Dou J., Wu L., Guo Q., Li D., Wang D., Hu C., Zheng P.: *Appl. Organometal. Chem.* **2005**, *19*, 1168; g) Dou J.-M., Wu L.-B., Guo Q.-L., Li D.-C., Wang D.-Q., Hu C.-H., Zheng P.-J.: *Acta Chim. Sin.* **2005**, *63*, 1087; h) Wu L.-B., Dou J.-M., Guo Q.-L., Li D.-C., Wang D.-Q.: *Indian J. Chem., Sect. A: Inorg. Bio-inorg. Phys., Theor. Anal. Chem.* **2006**, *45*, 1840; i) Nie Y., Chen H.-Y., Miao J.-L., Wang D.-Q., Sun G.-X., Dou J.-M.: *Chin. J. Struct. Chem.* **2009**, *28*, 120.

229. a) Crook J. E., Erlington M., Greenwood N. N., Kennedy J. D., Woollins J. D.: *Polyhedron* **1984**, *3*, 901; b) Crook J. E., Erlington M., Greenwood N. N., Kennedy J. D., Thotnton-Pett M., Woollins J. D.: *J. Chem. Soc., Dalton Trans.* **1985**, 2407; c) Bown M., Fontaine X. L. R., Greenwood N. N., MacKinnon P., Kennedy J. D., Thornton-Pett M.: *J. Chem. Soc., Dalton Trans.* **1987**, 2781; d) Fontaine X. L. R., Greenwood N. N., Kennedy J. D., Thornton-Pett M., Zheng P.: *J. Chem. Soc., Chem. Commun.* **1987**, 1717; e) Bown M., Fontaine X. L. R., Greenwood N. N., MacKinnon P., Kennedy J. D., Thornton-Pett M.: *J. Chem. Soc., Chem. Commun.* **1987**, 442; f) Bown M., Fontaine X. L. R., Greenwood N. N., Kennedy J. D., Thornton-Pett M.: *J. Chem. Soc., Dalton Trans.* **1988**, 925.

230. a) Hu C.-H., Yao H.-J., Jin R.-S., Zheng P.-J.: *Chin. J. Struct. Chem.* **1997**, *16*, 258; b) Yao H.-J., Hu C.-H., Dou J. M., Wei J.-D., Jin R.-S., Li W., Zheng P. J.: *Polyhedron* **1997**, *17*, 1877; c) Yao H.-J., Li W., Hu C.-H., Dou J.-M., Jin R.-S., Huang Z.-E., Zheng P.-J.: *Chin. J. Struct. Chem.* **1998**, *17*, 13; d) Nie Y., Hu C.-H., Sun J., Jin R.-S., Zheng P.-J.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1999**, *55*, 1224; e) Li X., Yao H.-J., Hu C.-H., Dou J.-M., Sun J., Jin R.-S., Zheng P.-J.: *Chin. J. Struct. Chem.* **1999**, *18*, 378; f) Nie Y., Hu C.-H., Wu Q.-J., Lu S.-F., Jin R.-S., Zheng P.-J.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **2000**, *56*, 536; g) Guo Q.-L., Dou J.-M., Wu L.-B., Li D.-C., Wang D.-Q.: *Chin. J. Chem.* **2006**, *24*, 1741.

231. Erlington M., Greenwood N. N., Kennedy J. D., Thornton-Pett M.: *J. Chem. Soc., Dalton Trans.* **1986**, 2277.

232.a) Fowkes H., Greenwood N. N., Kennedy J. D., Thornton-Pett M.: *J. Chem. Soc., Dalton Trans.* **1986**, 517; b) Fontaine X. L. R., Fowkes H., Greenwood N. N., Kennedy J. D., Thornton-Pett M.: *J. Chem. Soc., Dalton Trans.* **1987**, 2417.

233. Leyden R. N., Sullivan B. P., Baher R. T., Hawthorne M. F.: *J. Am. Chem. Soc.* **1978**, 100, 3758.

234.a) Dou J.-M., Hu C.-H., Li W., Yao H.-J., Jin R.-S., Zheng P.-J.: *Polyhedron* **1997**, 16, 2323; b) Dou J.-M., Hu C.-H., Gu J.-M., Nie Y., Yao H.-J., Jin R.-S., Zheng P.-J.: *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **1998**, 54, 1418; c) Dou J.-M., Hu C.-H., Yao H.-J., Jin R.-S., Zheng P.-J.: *Chin. J. Struct. Chem.* **1999**, 18, 326; d) Dou J.-M., Hu C.-H., Yao H. J., Li Y.-S., Jin R.-S., Zheng P.-J.: *Acta Chim. Sin.* **2002**, 60, 1993; e) Dou J.-M., Hu C.-H., Yao H.-J., Li Y.-S., Sun J., Jin R.-S., Zheng P.-J.: *Acta Chim. Sin.* **2003**, 61, 1006.

235. Schroeder M. A.: *J. Propul. Power* **1998**, 14, 981.

236. Sweet W. H., Soloway A. N., Wright R. L.: *J. Pharmacol. Exp. Ther.* **1962**, 137, 263.

237.a) Hawthorne M. F.: *Angew. Chem., Int. Ed. Engl.* **1993**, 32, 950; b) Soloway A. H., Tjarks W., Barnum B. A., Rong F.-G., Barth R. F., Codogni I. M., Wilson J. G.: *Chem. Rev.* **1998**, 98, 1515; c) Sivaev I. B., Bregadze V. I.: *Eur. J. Inorg. Chem.* **2009**, 1433.

238.a) Kaszynski P., Pakhomov S., Young V. G.: *Collect. Czech. Chem. Commun.* **2002**, 67, 1061; b) Kaszynski P.: Anisotropic Organic Materials. *ACS Symp. Ser.* **2001**, 798, 68.

239. Miniewicz A., Samoc A., Samoc M., Kaszynski P.: *J. Appl. Phys.* **2007**, 102, 033108.

240. Naoufal D., Grüner B., Selucky P., Bonnetot B., Mongeot H.: *J. Radioanal. Nucl. Chem.* **2005**, 266, 145.

241. Johnson J. W., Whittingham M. S.: *J. Electrochem. Soc.* **1980**, 127, 1653.

242. Nieuwenhuyzen M., Seddon K. R., Teixidor F., Puga A. V., Viñas C.: *Inorg. Chem.* **2009**, 48, 889.